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1|Introduction    

In the field of multivariate data analysis, the complexity arising from high dimensionality and intricate 

interdependencies among observed values often poses a significant challenge. In order to discern patterns 

within such data, it is frequently essential to disentangle its various aspects. Independent Component Analysis 

(ICA) is a widely utilized technique in multivariate statistics for this purpose. Initially proposed by Harlaut in 

the 1980s, ICA has gained substantial prominence as an unsupervised blind source separation method in the 

realm of signal processing [1].  

For a more comprehensive understanding of ICA and its applications in signal processing, an in-depth 

exploration of the technique and its role in multivariate data analysis can be found in the see [2], [3], [4] and 

[5]. These resources offer a detailed overview of ICA, encompassing its theoretical foundations, algorithms, 

and practical applications in the context of multivariate data analysis and signal processing. 
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Abstract 

The objective function of numerous well-established Independent Component Analysis (ICA) algorithms, widely 

recognized as unsupervised machine learning methods, is rooted in specific dependence criteria. This study introduces 

a distinctive dependence criterion based on the Cumulative Distribution Function (CDF) for characterizing the 

independence between two random variables. Furthermore, an in-depth exploration of the inherent properties of 

these variables is conducted. The proposed machine learning algorithms are then applied to real-world time series 

data, serving as an effective pre-processing clustering method. The algorithm's performance is systematically 

compared with several previous machine learning-based ICA algorithms.  
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  ICA is a matrix factorization approach that optimizes the signals captured by each matrix factor to achieve 

mutual independence. This technique has found applications in various scientific fields, including medical 

signals, audio signals, biological assays, space imaging, financial data, climate data, and time series data [6]. 

These applications demonstrate the versatility and utility of ICA in various scientific fields, making it a 

valuable tool for data analysis and pattern recognition. 

The organization of the paper is as follows: In the introduction, the paper introduces the concept of ICA and 

its applications in various scientific fields. Section 2 provides a comprehensive review of the ICA technique, 

its theoretical foundations, and its applications. The paper introduces a dependency criterion based on 

distribution functions and discusses its estimation in Section 3. 

Then, the performance of the proposed algorithm is compared to existing ICA algorithms using the average 

of Amari errors through a Monte Carlo simulation study. Section 5 will focus on the application of these 

algorithms in time series data clustering. 

Furthermore, this study delves into the application of data clustering methodologies to a set of real-time series 

data, specifically the Gross Domestic Product (GDP) per capita index, extracted from the statistics of 26 

countries spanning from 1975 to 2020. The conclusion of the research is drawn by summarizing the results 

and analyzing the structures extracted, as detailed in Section 6.  

2|Independent Component Analysis 

Each signal is time-varying, and a signal is represented as si = (s1i, s2i, … , sni)
T, i = 1,2, . . . , d, where n is the 

number of time steps, sij is time j of the signal si, and d is the number of source signals. Given d independent 

source signals define a matrix S = (s1, s2, ⋯ , sd), where S ∈ ℝn×d is the matrix of the source signals.  

The source signals can be mixed. As a result, each source signal has a different effect on the output signals. d 

mixtures can be represented as X =: SA, where X ∈ ℝn×d is the matrix of the mixed signals, n is the number 

of mixes and A ∈ ℝd×d is a mixing coefficients matrix. Therefore, the mixing coefficients are used to 

transform a linear source signal from S into a mixedsial in X = (x1, x2, ⋯ , xd) space as X = SA. The target is 

to extract the source signals by finding the unmixing coefficient matrix (W) used to convert the mixed signals 

into a set of independent signals, X → Y Y = XW, where W ∈ ℝd×d is the matrix of unmixing coefficients, and 

it is the inverse of the matrix A [7]. 

All ICA algorithms produce an unmixing matrix W that can be applied to matrix X to recover estimates of 

the independent components. Many types of research exist about different types of ICA procedures and their 

interpretations. Most ICA algorithms minimize a contrast function that measures the degree of dependency 

between components. The efficiency of the ICA algorithms depends on the choice of the contrast function 

and the algorithm used for the implementation of the optimization problem. Matrix W can be estimated using 

several main independence approaches, which leads to the creation of unmixed matrices with slight 

differences. In all these approaches, an unmixed matrix is obtained. The data is projected on that matrix, and 

the independent signals are extracted; see [1], [7], and [8]. 

In ICA, the Maximum likelihood (ML) method is used to estimate the matrix W, which provides the best fit 

for the extracted Y signals; see [9], [10], and [11]. Because the Mutual Information (MI) criterion measures 

the independence between two random variables, many algorithms for ICA are constructed based on 

minimizing MI to estimate the initial signals [12]. Therefore, independent components can be obtained by 

minimizing MI between different components; see [1] and [7]. In this setting, the matrix W is obtained such 

that the MI criterion is close to zero. 

3|Proposed Dependency Criterion 

It is inevitable to encounter independent components that are unknown and do not have the usual statistical 

distributions in ICA. The objective function of many ideas in ICA is based on the density functions. These 

led to a hard way of estimation because the calculation of the estimators can be included with errors. A 
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  solution to this is to use the Cumulative Distribution Functions (CDFs) in ICA algorithms. Unlike the density 

function estimators, the estimators based on the empirical distribution functions are very simple and fast in 

statistical inference.  

Moreover, the empirical distribution functions converge to the theoretical CDFs almost surely. On the other 

hand, we know that in ICA, a dependency criterion will be helpful if it characterizes the independence between 

two random variables. Motivated by these facts, we will introduce a criterion based on the CDFs that 

characterizes the independence between two random variables if it would be equal to zero; see [5], [13], [14]. 

Let X1 and X2 be two random variables with the joint distribution function F, the marginal distribution 

functions F1 and F2, respectively. We define a dependency criterion based on CDFs, denoted by GDC as the 

following form: 

 

These divergences vanish if and only if the random variables X1 and X2 are independent. 

Theorem 1.  

GDC(X1, X2) = 0, if and only if X1 and X2 are independent. 

Proof: The results hold. 

3|Estimate Dependency Criterion 

Let Xn×2 be the observation matrix from the random vector (X1, X2) with the joint distribution function F 

and the marginal CDFs F1 and F2, respectively. Also, suppose that xij = [X]ij, i = 1,2, . . . , n, j = 1,2. Functions 

F̂1(x1) and F̂2(x2) are the marginal empirical distribution functions and F̂(x1, x2) will be the joint empirical 

distribution function. Now, we can estimate GDC as 

4|The Proposed Independent Component Analysis Algorithm 

Based on 𝐆𝐃�̂� 

In this section, the general process of the new algorithm for ICA is explained. The algorithm uses the 

estimator GDĈ for GDC, and it is called GDCICA. The general process of the algorithm for a 2-dimensional 

case is summarized as follows: 

Algorithm 1     

Input: A matrix X ∈ Rn×2 where the rows are mixed-centered components. 

Make the matrix X white, so that Y = X × Z′, where Z is a whitening matrix. 

Define GDĈ(S(θ)) as the function of θ, where S(θ) = Y × R(θ), such that R(θ) is an orthogonal rotation 

matrix as  

 

Minimize the function GDC(X1, X2) over θ ∈ [−
π

2
,

π

2
] and set θ0 = argminθ GDĈ(S(θ)). 

Output: Unmixing Ŵ = R′(θ0) × Z, and matrix of source signal estimates Ŝ = Y × R(θ0) [16]. 

GDC(X1, X2) = ∬ (cosh (
F(x1, x2)

F1(x1)F2(x2)
− 1) − 1) dF(x1, x2). (1) 

GDC(X1, X2) = GDC(X2, X1).  

GDĈ(X1, X2) = ∬ (cosh (
F̂(x1, x2)

F̂1(x1)F̂2(x2)
− 1) − 1) dF̂(x1, x2). (2) 

R(θ) =  (
cos(θ) −sin(θ)

sin(θ) cos(θ)
) .  
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5|Simulation Study 

In this section, we utilize the Monte-Carlo simulation to compare the performance of GDCICA with FastICA 

[15], Infomax [16], JADE [17], RADICAL [18], HICA [19], and RLICA [20] using R software. We use 18 

different one-dimensional densities provided by [23]. For comparison, we applied the Amari error introduced 

by [21]. We obtained the average of the Amari errors of the methods FastICA, Infomax, JADE, RADICAL, 

HICA, RLICA, and GDCICA by 120 replications of their corresponding algorithms. 

The averages of errors for the n=1000 sample are reported in Table 1. In this table, it is observed that in 

terms of Amari error, GDCICA outperforms its competitors in 8 out of 18 cases and is better than FastICA, 

Infomax, JADE, RADICAL, HICA, and RLICA methods. The GDCICA applied to data cases with 

nonsymmetric distributions labeled as e, j, k, p, and q has yielded the best performance. The algorithm with 

negative kurtosis distributions labeled as g, k, p, and q yields the best performance. Also, multimodal 

distributions labeled as f, g, j, and p exhibited the lowest Amari errors. 

Also, we calculated the average of Amari errors on all distributions (a) to (r) and provided them in the last 

row of Table 1. We see that GDCICA is the best technique regarding the average of the Amari errors in all 

distributions. In addition, we randomly selected two distributions among all distributions (a) to (r) and 

calculated the averages of Amari errors for them, which are reported in the last line of Table 1. The results 

showed that in the choice of random distributions, in terms of Amari error, GDCICA was the best. 

Table 1- Averages of Amari errors for d=2 and n=1000 samples. The smallest entry of 

our functions in each row is boldfaced. 

 

 

 

 

 

 

 

 

 

 

 

 

6|Real Data 

Time series clustering has been practical and often attractive in producing beneficial information in various 

domains. Since ICA naturally takes the temporal dependency into account through its underlying model when 

decomposing variables, ICA gives the opportunity to generate independent components quickly and then 

group them based on the temporal dependence among them [22]. ICA is used as a data pre-processing step 

to improve the clustering of temporal data. 

Using ICA not only provides the possibility of clustering of time series but also supplies information on 

common characteristics. This technique is a multi-stage procedure that uses the GDCICA algorithm on real 

data as pre-processing in time series clustering. The mixing matrix coefficients obtained by GDCICA can be 

Distributions Fast ICA Infomax JADE RADICAL HICA RLICA GDCICA 

a 0.5401 0.5402 0.5339 0.5440 0.5239 0.5340 0.5514 
b 0.5237 0.5237 0.5350 0.5442 0.5234 0.5268 0.5213 
c 0.5196 0.5196 0.5203 0.5245 0.5213 0.5225 0.5295 
d 0.5443 0.5445 0.5594 0.5537 0.5383 0.5427 0.5737 
e 0.5435 0.5397 0.5060 0.5092 0.5312 0.5397 0.5438 
f 0.5340 0.5340 0.5378 0.5400 0.5454 0.5448 0.5172 
g 0.4781 0.4781 0.4782 0.4767 0.4784 0.4807 0.4716 
h 0.5458 0.5458 0.5500 0.5352 0.5184 0.5417 0.5304 
I 0.5128 0.5126 0.5076 0.5154 0.5183 0.4989 0.5265 
j 0.5160 0.5272 0.5064 0.5080 0.5149 0.5090 0.4953 
k 0.5316 0.5315 0.5303 0.5413 0.5436 0.5429 0.5171 
L 0.5083 0.5075 0.5137 0.5073 0.5096 0.5018 0.5243 
M 0.5076 0.5076 0.5127 0.5014 0.5325 0.5160 0.5089 
N 0.5360 0.5365 0.5365 0.5215 0.5477 0.5262 0.5457 
O 0.4784 0.4784 0.4878 0.5011 0.4981 0.4969 0.4783 
P 0.5475 0.5472 0.5498 0.5554 0.5461 0.5468 0.5337 
q 0.5342 0.5331 0.5337 0.5479 0.5452 0.5492 0.5108 
R 0.5192 0.5192 0.5156 0.5308 0.5183 0.5100 0.5151 
Average 0.5234 0.5237 0.5230 0.5254 0.5253 0.5239 0.5219 
Rand 0.5151 0.5171 0.5153 0.5184 0.5185 0.5167 0.5080 
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  exerted as an input variable in a clustering method. Here, we provide the time series clustering using the 

GDCICA algorithm as a pre-processing, and then we apply the PAM algorithm (K-medoids) introduced by 

[26] to the final clustering. After estimating the mixing matrix using our algorithm, we apply the PAM 

clustering algorithm on the unmixing matrix to determine the suitable number of clusters and to select the 

best clustering in terms of the Silhouette criterion using the NbClustR package. Therefore, the best clustering 

is reported as the final result. 

We apply the GDCICA algorithm on a batch of time series to prepare them for clustering using R software. 

We consider the GDP per capita time series for 27 countries from 1975 to 2020. (Australia, Austria, Belgium, 

Burkina Faso, Cameroon, Canada, Chile, China, Denmark, Finland, France, Germany, Ghana, India, 

Indonesia, Italy, Japan, South Korea, Malaysia, Pakistan, Qatar, Saudi Arabia, Singapore, Sweden, Turkey, the 

United Arab Emirates, and the United States). 

The data comes from the World Bank organization. We aim to cluster countries by their GDP per capita time 

series over the past 46 years. To do this, the primary GDP per capita data were standardized. Then, the 

GDCICA algorithm was used on the principal components, and the coefficients of the mixing matrix in GDP 

per capita standardized data were obtained; then, they were applied as input to the PAM clustering algorithm. 

Though these time series data follow various distributions, the proposed GDCICA algorithms can extract the 

sources well for clustering them. 

To check the efficiency of this method, time series plots in 5 clusters are drawn in Fig. 1. Based on trend plots 

obtained from all clusters in standardized GDP per capita, the pre-processing technique done by the proposed 

algorithm for clustering countries worked very well because is intuitively clear that countries in the identical 

cluster have similar trends in standardized GDP per capita. 

Fig. 1. Trend plots of standardized GDP per capita time series in 4 clusters.     
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7|Conclusion  

The objective function of many well-known ICA algorithms is based on density functions. Their estimation 

makes the algorithms proceed longer, and the implementation is time-consuming. To solve this problem, it 

was proposed to use dependence criteria for two continuous random variables X1 and X2 based on the CDFs. 

Then, we presented an algorithm for the ICA problem based on this dependence criterion, called GDCICA. 

To evaluate the performance, the proposed algorithm was compared to some of the ICA algorithms by the 

Monte Carlo simulation. Results showed that in most cases, the proposed algorithm attains better 

performance than the usual ICA algorithms in different classes of distributions in terms of the average of the 

Amari errors. Also, the GDCICA algorithm, in nonsymmetric, multimodal distributions, and the negative 

kurtosis class exhibited the lowest Amari errors. 

We used a batch of time series involving GDP per capita for 27 countries over the past 46 years for clustering. 

The GDCICA algorithm, as a pre-processing, was used on the principal components, and the coefficients of 

the mixing matrix were obtained; then they were applied as input to the PAM clustering algorithm. The results 

obtained from the clustering of time series showed that the pre-processing technique by the proposed 

algorithm can be advantageous in suitable clustering of different data that follow different distributions. 
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