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1|Introduction    

Data Envelopment Analysis (DEA) is a branch of management interested in evaluating the efficiency of 

homogeneous Decision-Making Units (DMUs). Charnes, Cooper, and Rhodes (CCR) [1] developed DEA in 

1978 in their famous article. Since 1978, there has been a spurt of broad searches on the DEA. Today, many 

scholars all over the world are working in this domain. The performances of DMUs are affected by the 
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quantify, and interpret congestion situations where input increases lead to output reductions or vice versa, indicating 
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number of origins that DMUs use. Usually, increases in inputs cause increases in outputs. But there are 

situations where an increase in one or more inputs generates a reduction in one or more outputs. For example, 

in an underground coal mine, too many men decrease the output of coal. In such situations, there is 

congestion in inputs or the production process. The definition used in this research is as follows: 

Definition 1. 

Input: A set of resources available to the DMU, denoted by the vector X= (x1, x2, … . … , xm). 

Output: A set of items produced from the input vector X by the DMU, denoted by the vector Y= 

(y1, y2, … . . , ym). 

Efficiency-extended Pareto-Koopmans  

Full (100%) efficiency is attained by any DMU if and only if none of its inputs or outputs can be improved 

without worsening some of its other inputs or outputs. If the performances of other DMUs do not show that 

some of their inputs or outputs can be improved without worsening some of their other inputs or outputs 

[2]. 

Congesion 1 ([3]). Congestion is said to occur when the output that is maximally possible can be increased 

by reducing one or more inputs without improving any other input or output. Conversely, congestion is said 

to occur when some of the outputs that are maximally possible are reduced by increasing one or more inputs 

without improving any other input or output. 

Input-oriented CCR model 

Banker, Charnes and Cooper BCC model  

Congestion has been an under-researched topic in Western economics partly [5] because a Nobel Laureate 

economist questioned whether "congestion" as a subject of research should have any place in economics in 

his review of the "X-Efficiency" concept of [4], [6]. However, after a long period of neglect in the economics 

θo
∗ = minθo,  

s. t. 

∑ λj
n
j=1 xij ≤ θxio,  i = 1… ,m,   

∑ λj
n
j=1 yrj ≤ θyro,  r = 1. . . , s, 

λj, sio
− , sro

+ ) ≥ 0,  j = 1… , n, i = 1… ,m, r = 1… , s. 

(1) 

φo
∗ = max φo, 

s. t. 

∑λj

n

j=1

xij ≤ θxio, i = 1… ,m, 

∑λj

n

j=1

yrj ≤ θyro, r = 1… . , s 

∑λj

  n

j=1

= 1, 

λj, sio
− , sro

+ ) ≥ 0,  j = 1… , n, i = 1… ,m, r = 1… , s. 

(2) 
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literature, Färe and Svensson [7] excogitated new research in this area by reformulating some of the concepts 

connected with congestion. Färe and Grosskopf [8] then gave this abstraction operational form. Later, 

complete the models (And methods of analysis) that they used to analyze congestion and accord them a form 

that would now be identified with DEA [9]. 

This approach was the only one accessible in the DEA literature and was therefore employed in all of the 

research into congestion in the numerous applications that were then undertaken, however, formulated an 

alternative approach which has also begun to see different extensions and applications interest in the 

development of alternative approaches has now started to result in additions and extensions in a various of 

ways [10]. This has been advantageous because new alternatives provide a perspective on shortcomings as 

well as advantages in the utilization of existing models. This was exhibited, for example, in the exchanges 

between Färe and [11–13]. 

Shortcomings in the [14] approach were then identified [15] in a manner that led to the exchanges between  

[16] and [17]. Many new applications have been reported in different fields. Congestion, as used in economics, 

refers to circumstances where reductions in one or more inputs generate an increase in one or more outputs 

without worsening any other input or output. There are two principal approaches for identifying and 

measuring congestion [8], [15]. To overcome these theoretical shortcomings in previous research about 

congestion and returns to scale, the first problem of RTS was considered, and several methods for measuring 

RTS [17] were developed.  

2|Conjection Model 

Färe, Grosskope and Lovell approach 

The Färe, Grosskope, and Lovell (FGL) method [18] proceeds in two steps. The first step utilizes an "input-

oriented" Model (1). In this model xij is the observed amount of input i=l,...,m utilized by DMUj and yrois the 

observed amount of output r=l,...,s produced by DMU𝐣. The xio and yro represent the amounts of inputs 

i=l,...,m and outputs r=l,...,s associated with DMUowhere DMUo is the DMUj=DMUo to be evaluated dependent 

on all DMUj (Including itself). The aim is to minimize all of the inputs of DMUo in the proportion  θ∗where, 

because the xio = xij and yro = yrj for DMUj=DMUocome in on both sides of the constraints in Eq. (1), the 

optimal θ∗ = θ does not exceed unity, and the non-negativity of the λo, xij and yrj implies that the value of θ∗ 

will not be negative under the optimization in Eq. (1). Hence, 0 ≤ Minq =θ∗ ≤1. There are the following 

explanations of technical efficiency and inefficiency: 

Färe, Grosskope, and Lovell technical efficiency 

I. Technical efficiency is gained by DMUo if and only if θ∗=1. 

II. Technical inefficiency exists in the performance of DMUo if and only if 0 ≤ θ∗ ≤1. 

This definition ignores the possible presence of non-zero slacks even when the answer of Eq. (1) shows them 

to be present. This definition refers to "weak" technical efficiency. This is the term utilized in the operations 

research literature. In the economics literature, it is referred to as the assumption of "strong disposal." In any 

case, FGL then goes on to the following second step model: 

β∗ = Min β, 

s. t. 

∑xijλj

n

j=1

= βxio, i = 1… ,m, 

∑ yrjλj
n
j=1 ≥ yr0,  r = 1. . . , s, 

(3) 
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Note that the first i=l..., m inequalities in Model (1) are replaced by Eq. (3). Therefore, slack is not possible in 

the inputs. The fact that only the output can yield non-zero slack is then referred to as "weak disposal" by 

[19]. We note that Model (3) is more restricted than Model (3) by the goodness of replacing inequalities with 

equations. Hence, we have 0 ≤ θ∗ ≤ β∗. FGL utilizes this property to develop a "measure" of congestion: 

Combining Models (1) and (2) in a two-step manner, FGL utilizes this measure to identify congestion in terms 

of the following conditions: 

I. Congestion is identified as present in the performance of DMUo if and only if  

II. C(θ∗, β∗) <1. 

III. Congestion is identified as not present in the performance of DMUo if and only if C(θ∗, β∗) =1. 

Cooper, Thompson, and Thrall approach 

Cooper et al. [10] present another model, which was extended by Brockett et al. [11] in their study of 

congestion in Chinese production. See the further developments on the utilization of these results for policy 

guidance in Cooper et al. [12]. This alternate method also proceeds in a two-step manner, with Model (2) 

utilized in the first step. In Model (2), ξ is a non-Archimedean element smaller than any positive real number. 

It is used only in theory to refrain from rewriting the model. In other words, in practice, two distinct structures 

with their objective functions, but similar constraints, must be solved to obtain the optimal solution. Then 

solve Eq. (2) for each DMU. For an optimal solution (ρ∗, λ∗, S+
∗
, S−

∗
) of Eq. (2), re-express the constraints in 

the following form:  

In this method, the values on the Left-Hand Side (LHS) in Eq. (4) and Eq. (5) are used to explain new outputs 

and inputs y
ro
^ , r = 1, … , s , xio

^ , i = 1, … , m as in the following: 

Note that yro
^ , xio

^  are the coordinates of points on the efficiency frontier. In the above method, inefficiency 

is a necessary condition for the presence of congestion. Therefore, at first, the method uses Eq. (2) to identify 

whether DMU0 is inefficient. If it is found to be so, then the technique uses Eq. (2) and Eq. (3) to formulate 

Eq. (6): 

λj ≥0,  j = 1… , n. 

0≤ C(θ∗, β∗) =
θ∗

β∗
 ≤ 1.  

ρ∗yro + sr
+∗ = ∑ yrj

n
j=1 λj

∗,  r = 1… , s, (4) 

xio − si
−∗ = ∑ xijλj

∗n
j=1 ,  i=1…,m. (5) 

yro
^ = ρ∗yro + sr

+∗ ≥ yro,  r = 1… , s, (6) 

xio
^ = xio − si

−∗ ≤ xio,  i = 1… ,m. (7) 

Max  ∑ δi
−m

i=1 , 
 

s. t.  

yro
^ = ρ∗yro + sr

+∗ = ∑ yrj
n
j=1 λj,  r=1…, s, 

xio
^ = xio − si

−∗ = ∑ xij
n
j=1 λj − δi

−,  i = 1…,  

 

∑ λj=1
n
j=1 ,  j=1…, n, (8) 
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Finally, to determine the level of congestion, the method utilizes the input constraints at the bottom of Model 

(6) to obtain: 

Substituting Eq. (8) into Eq. (6), can rewrite the latter as Eq. (9): 

 

 

 

 

 

 

 

 

Cooper et al.'s method 

Using ξ, Cooper et al. [20] combined this stage into the single Model (10): 

As referred to earlier, the use of ξ only has theoretical justification. In the method, the calculations must be 

performed in three stages, and three models must be solved in order to achieve the optimal solution and 

identify the corresponding level of congestion. 

In order to detect the presence of congestion in a DMU, Cooper et al. [20] presented the following theorem 

for identifying and measuring congestion: 

si
−∗ ≥ δi

∗,  i=1…, m, 

δi
∗ ≥ 0,  i=1…, m 

λj ≥ 0, j = 1… , n. 

∑ xijλj
∗ − xio

^ = δi
−∗ ,   n

j=1  i = 1… ,m, 

si
−c∗= si

−∗ − δi
−  ∗ ,  i = 1… ,m, 

(9) 

Min ∑ si
−cm

i=1 , 

s. t.   

ρ∗yro + sr
+∗ = ∑ yrjλj

n
j=1 , r = 1… , s, 

xio − si
−c = ∑ xijλj

n
j=1 ,  i = 1… ,m,  

∑ λj=1
n
j=1 , j = 1… , n, 

si
−c ≥ 0, i = 1… ,m, 

λj ≥ 0,  j=1…, n. 

                            
(10) 

Max ρ + ξ (∑ sr
+ − ξ∑ si

−cm
i=1

s
r=1 ),  

s.t.  

∑ xijλj + sio
−c = xio

n
j=1 , i=1…, m, 

∑ yrjλj − sro
+ = ρ0yro

n
j=1 , r=1…, s, 

∑ λj=1
n
j=1 , j=1…, n, 

 (λj, sio
− , sro

+ )≥0,  j=1…., n,  i=1…, m, r=1…, s. 

(11) 
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Theorem 1. Congestion is present if and only if in an optimal solution ( ρ∗, λ∗, s+

∗
, s−

∗
) of Eq. (2), at least one 

of the following two conditions is satisfied: 

I. ρ∗ >1 and there is at least one s−c
∗
> 0, (1 ≤ i ≤ m). 

II. There exists at least one sr
+∗ > 0, (1 ≤ r ≤ s) and at least one s−c

∗
> 0, (1 ≤ i ≤ m) For additional detail on, 

see [20]. 

Tone and Sahoo approach 

In this method, there exist n DMU for j = 1..., n) and each DMU uses m inputs (i = 1..., m) to produce s 

outputs (r = 1..., s). The ith input and the rth output are specified by (xij, yrj) for the jth DMU [21]. The output-

oriented congestion of the kth DMU is measured by comparing the objective values of the following two 

(Left and right) DEA models: 

 Original 

Congestion 

The original (left) model is a Banker, Charnes and Cooper (BCC) model [4]. The original Model (11) provides 

a radial non-parametric measure for Technical Efficiency (TE). An important feature of the TE measure is 

that it avoids the assumption of constant RTS (So, variable RTS). The variable λj (j = 1..., n) is used to connect 

inputs and outputs in a data domain representing a Production Possibility Set (PPS). The variables (θ and β) 

in the objectives of the two models represent, respectively, a level of TE under two different production 

technologies. Those are Unrestricted (URS) in such a manner that each of the two variables can take any sign. 

As can be easily identified by comparing Eq. (11) with Eq. (12), there is only a major difference between the 

two DEA models. The first set of constraints is formulated by inequality in Eq. (11), while being equality in 

Eq. (12). To extend the two DEA models further into the issue of congestion, let the PPSs of Eq. (11) and 

Eq. (12) be: 

Max θ, 

s. t.  

∑ λj
n
j=1 xij ≤ xik,  i=1…, m, 

∑ yrjλj
n
j=1 − θyrk ≥ 0,  r=1…, s, 

∑ λj
n
j=1 = 1, 

θ = URS,  and λj ≥ 0,  j=1…, n. 

(12) 

Max β, 

s.t. 

  −∑ xijλj
n
j=1 + xik ≥ 0, i=1…, n, 

∑ yrjλj
n
j=1 − βyrk ≥ 0, r=1…, s, 

∑λj

n

j=1

= 1,  

β = URS and λj ≥ 0, j=1…, n. 

(13) 
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The two DEA models can be expressed by max {θ|(xk,θyk}∈ P and max max {β|(xk,βyk}∈ Pconvex, using the 

two PPSs. The two DEA Models (11) and (12) have the following dual formulations: 

Banker, Charnes and Cooper  

Congestion 

Here, vi (i = 1..., m) and ur (r = 1..., s) are dual variables (multipliers) derived from the first and second 

constraint sets in Eq. (11) and Eq. (12). Similarly, r is a dual variable derived from the last constraint. Almost 

no difference is identified between the two dual models. However, a careful examination of the two 

formulations indicates that vi is non-negative in Eq. (3), but it is unrestricted URS in Eq. (14). 

Let the optimal value of Eq. (11) be θ∗ and that of Eq. (12) be β∗, where the superscript (*) indicates optimality. 

Then, the output-oriented Congestion (OC) is measured by the following ratio. 

If OC (θ∗, β∗)> 1, then the congestion occurs on the kth DMU. Meanwhile, if OC (θ∗, β∗)= 1, then there is no 

congestion. The previous research extended the concept of congestion further by linking it to other economic 

p =

{
 
 

 
 

(x, y)|

x ≥∑xjλj, y ≤∑yjλj

n

j=1

n

j=1

,

∑λj = 1

n

j=1

 λj ≥ 0, j = 1,… , n.

  

pconvex:

{
 
 

 
 

(x, y)|

x =∑xjλj, y ≤∑yjλj

n

j=1

n

j=1

,

∑λj = 1

n

j=1

 λj ≥ 0, j = 1,… , n.

  

Min∑vixik − σ

m

i=1

, 

∑vixij +∑uryrj + σ ≤ 0

s

r=1

m

i=1

, j = 1,… , n, 

 ∑ uryrk = 1
s
r=1 ,  

vi ≥ 0, ur ≥ 0, and σ, URS. 

(14) 

min∑vixik − σ

m

i=1

,  

∑vixij +∑uryrj + σ ≤ 0

s

r=1

m

i=1

, j = 1,… , n,  

∑uryrk = 1

s

r=1

, 

vi, URS , ur ≥ 0 and σ, URS. 

(15) 

Output − oriented Congestion: OC (θ∗, β∗)=
θ∗

β∗
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concepts related to efficiency, proposed to measure the concept of strong efficiency, and discussed the 

relationship between the two economic concepts [21], [22]. The strong efficiency is defined as follows. 

Definition 2. Let θ∗ be the optimal value of Eq. (11) and let (dx
∗
, dy

∗
, λ∗) be an optimal solution of 

The status of ‘‘strong efficiency” is identified within P if and only if θ∗ = 1, dx
∗
= 0, and dy

∗
= 0. Similarly, 

let β∗ be the optimal value of Eq. (12) and let (dy
∗
, λ∗)be an optimal solution of: 

The status of ‘‘strong efficiency” is identified within pconvex if and only if β = 1 and  dy
∗
= 0.. Based upon the 

definition regarding strong efficiency, they redefined the concept of ‘‘weak congestion” in the following 

manner [22]: 

Definition 3. A DMU is ‘‘weakly congested” if it is strongly efficient with respect to pconvex and there exists 

an activity in pconvex that uses fewer resources in one or more inputs to make more products in one or more 

outputs. Definition 3 makes it possible for the following DEA model to examine whether the kth DMU suffers 

from an occurrence of strong congestion: 

According to TS method [22], if the optimal objective value of Eq. (17) is negative, then the kth DMU suffers 

from ‘‘strong congestion”. In this study, the concept of ‘‘strong congestion” implies the status of ‘‘weak 

congestion” under Definition 2. The assertion is trivial because if a DMU is under congestion, then it satisfies 

weak congestion. Moreover, let us consider that a DMU belongs to ‘‘congestion” if the DMU satisfies the 

condition related to Eq. (15). The three different concepts (Congestion, weak congestion and strong 

congestion) have the following relationship among them. 

Max ∑ di
x + ∑ dr

ys
r=1

m
i=1 , 

xik=∑ xijλj
n
j=1 + dj

x,  i=1…, m, 

θ∗yrk=∑ yrjλj
n
j=1 − dr

y
,  r=1…, s, 

∑ λj
n
j=1 =1 and λj ≥ 0,  j=1..., n. 

(16) 

max ∑ dr
ym

i=1 ,  

xik=∑ xijλj
n
j=1 , i=1…, m, 

β∗yrk=∑ yrjλj
n
j=1 − dr

y
,  r=1…, s, 

∑ λj
n
j=1 =1 and λj ≥ 0,   j=1..., n. 

(17) 

Max∑vixik −

m

i=1

∑vixij +∑uryrj + σ ≤ 0,

s

r=1

m

i=1

 j = 1,… , n, 

∑vixij +∑uryrj + σ = 0

s

r=1

m

i=1

, j = 1,… , n, 

∑uryrk = 1

s

r=1

, vi = URS , ur ≥ 0 and σ, URS. 

(18) 
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Theorem 2. If a DMU belongs to strong congestion, then the DMU belongs to congestion. If a DMU is 

strongly efficient with respect to Pconvex and it belongs to congestion, then the DMU belongs to weak 

congestion. 

2.1|Congestion Measurement by Tone and Sahoo, under Multiple 

Projections 

The TS technique [22] has proposed the following method to measure the Degree of Scale Elasticity (DSE) 

of the kth DMU on its projected point (xk
, , yk

, ): 

Step 1. Let θ∗be the optimal value of Eq. (11) and let (dx
∗
, dy

∗
, λ∗) be an optimal solution of Eq. (16):  

If θ∗ = 1, dx
∗
= 0, and dy

∗
= 0; then (xk

, , yk
, ) is efficient and not congested under variable RTS. Let 

and 

If θ∗ = 1, dx
∗
≠ 0, and dy

∗
= 0; then (xk

, , yk
, ) is technically inefficient and stops. 

If θ∗ = 1, and dy
∗
≠ 0; or θ∗ > 1 then (xk

, , yk
, ) is congested, and go to Step 2. 

Step 2. Let  p̅ be the optimal value of Eq. (17). If p̅ < 0, then (xk
, , yk

, ) is strongly congested. 

Otherwise p̅ ≥ 0, (xk
, , yk

, ) is weakly, but not strongly, congested. Solve the following problem: 

where εn is a non-Archimedean small number. 

Let (tx
∗
, ty

∗
) be an optimal solution of Eq. (10). Let  s̅ and m ̅̅ ̅be the number of positive tr

y∗(r = 1,… , s) and 

the number of positive ti
x∗(i = 1,… ,m) . Then, the DSE is measured by 

Toshiyuki et al.'s method 

Definition 4. A DMU is ‘‘widely” congested if it exists on the boundary of pconvex and it has an activity in 

pconvex that uses fewer resources in one or more inputs to make more products in one or more outputs [17]. 

This definition implies that if a DMU is widely congested, then it exists on the boundary of Pconvex. However, 

the DMU doesn't need to be strongly efficient with respect to Pconvex. If the DMU is strongly efficient with 

respect to pconvex, it exists on the boundary of Pconvex. 

Theorem 3. If a DMU is ‘‘weakly” congested, then the DMU is ‘‘widely” congested. 

p̅ = max{vxk
, |the same constraints as (8) , v ≥ 0}.  

p = min{vxk
, |the same constraints as (2 − 17) , v ≥ 0}.  

Let DSEk =
p̅+p

2
 and stop.    

 

p = min{vxk
, |the same constraints as (2 − 17) , v ≥ 0} Let DSEk =

p̅ + p

2
 and stop.   

 

Max {
1

s
∑

tr
y

yrk
, + εn

1

m
∑

ti
x

xik
,

m
i=1 |xk

, − tx, yk
, + tys

r=1 ∈ P, tx ≥ 0, ty ≥ 0}, (19) 

DSEk =
−
1
s
∑

tr
y∗

yrk
,

s
r=1

1
m
∑

ti
x∗

xik
, .m

i=1

⁄   
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The change from weak congestion to wide congestion implies that strong efficiency with respect to pconvex is 

not essential in terms of congestion identification. Instead, we must examine whether a DMU exists on the 

boundary of pconvex. As a consequence of such a change, we can eliminate Step 2 of Sueyoshi [17], including 

Eq. (18), from the congestion identification. Based upon Theorem 3, we proposed the following new approach 

to project all DMUs onto the boundary of pconvex. 

Projection: Identify optimal β∗ of each DMU by solving  Eq. (12). A projected point of the DMU is identified 

by: 

Since β∗ is uniquely determined by Eq. (12), the projected point (xk
, , yk

, ) is also uniquely determined by Eq. 

(19). A computational benefit of the projection is that Eq. (19) is not influenced by the occurrence of multiple 

projections. Furthermore, the projected point (xk
, , yk

, ) has β∗ = 1 on optimality of Eq. (12). To examine 

whether a DMU is congested or not, we need to characterize the wide congestion in the following manner 

mathematically. 

Theorem 4. Assume that (xk, yk) is on the boundary of pconvexand the optimal value of Eq. (12) is β∗ = 1. A 

DMU (xk, yk) is widely congested if and only if any optimal solution of Eq. (14) (v*, u*, r*) satisfies either: 

I. vi
∗< 0 for at least one i ∈ {1..., m}. 

II. v∗ > 0 for at least one i ∈ {1..., m}, and ur
∗ = 0 for at least one r∈{1..., s}.  

Identification of wide congestion under the occurrence of multiple projections 

For the identification of wide congestion under the occurrence of multiple projections, the following 

approach for identifying wide congestion consists of two linear programming problems. 

Step 3. Choose δ> 0 arbitrarily (Where δ is a real number) and solve the following problem 

Here, an arbitrary real number (σ) guarantees the existence of an optimal solution of Eq. (14). Since e 

represents the smallest value of vixik (i = 1..., m) in such a manner of min {min {vixik|i = 1..., m},σ }, the 

arbitrary number (σ) functions as the upper bound. Consequently, Eq. (20) always has an optimal solution. 

All the constraints of Eq. (20), except (vixik − ε ≥ 0 (i=1…, m)  ∑ vixik − σ = βm
 i=1    ε ≤ δ)   are obtained from 

Eq. (12) and (14). [17] provided a rationale regarding why Eq. (20) deals with an occurrence of multiple 

solutions. Problem (13) is a modified version of their approach for Eq. (17). The proposed approach restricts 

the DEA dual variable in order to obtain a reduced projection range for the measurement of wide congestion. 

xk
, ← xk (unchanged) and yk

,
 ← β∗yk. (20) 

Max ε + ∑ dr
ys

r=1 ,  

∑vixij +∑uryrj + σ ≤ 0

s

r=1

m

i=1

, j = 1,… , n, 

 xik=∑ xijλj
n
j=1 ,  i=1…, m, 

 

∑uryrk = 1

s

r=1

, 

βy
k
= ∑ y

rj
λj

n
j=1 − dr

y,  r=1…, s, 

∑vixik − σ = β

m

i=1

,∑λj = 1

n

j=1

, j = 1,… , n 

vixik − ε ≥ 0,  i=1…, m, 

ε ≤ δdr
y ≥ 0, vi, URS,≥ 0  , σ, URS , β, URS , , URS , λj ≥ 0. 

(21) 
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Let (λ∗, β∗, dy
∗
, v∗, u∗, σ∗, ε∗)be an optimal solution of Eq. (20), then we can identify the wide congestion on 

the projected point (xk, β
∗yk) of the kth DMU as follows: 

I. if ε∗ < 0, then( xk, β
∗yk) is widely congested, 

II. ε∗ >0, then (xk, β
∗yk) is not widely congested, 

III. if ε∗ = 0 and ∑ dr
y∗s

r=1 > 0, then (xk, β
∗yk) is widely congested and, 

IV. if ε∗ = 0 and ∑ dr
y∗s

r=1 = 0, then go to Step 2. 

Step 4. Solve the following problem 

The wide congestion of the kth DMU is identified as follows: 

I. if α∗> 0, then (xk, β
∗yk) is not widely congested and 

II. if α∗ = 0, then (xk, β
∗yk) is widely congested. 

Jahanshahloo, Rashidi, and Parker method 

Solve Model (2) for each DMUj, j = 1…, n, and achieve the optimal solution [23]: 

(ρ∗, λ∗, s+
∗
, s−

∗
) denoting the ρ∗ corresponding to DMUj by ρj

∗. The set E is defined as follows: 

Among the DMUs in set E, there exists at least one DMU, say DMUj, that has the highest usage in its first 

input component compared with the first input component of the remaining DMUs of set E. That is to say, 

They denoted x1l by x1
∗. Then find, again, among the DMUs in E, a DMU, say t DMU, that has the highest 

usage in its second input component compared to the remaining DMUs in E. In other words, 

They showed x2t by x2
∗   Similarly, for all input components i= 1,..., m, identify a DMU in E whose ith input 

consumption is higher than that of all other DMUs in the set. Inputs denoted by xj
∗, i=1…, m. Note that 

x1
∗, x2

∗ , … . , xm
∗   need not certainly be selected from a single DMU. The congestion is discussed as follows: 

Definition 5. Congestion is present if and only if, in an optimal answer (ρ∗, λ∗, s+
∗
, s−

∗
) of Eq. (2) for DMUo, 

at least one of the following two conditions is satisfied: 

I. φ∗ > 1, and there is at least one xio > xi
∗,i=1…., m. 

II. There exists at least one sr
+∗ > 0  (r =1..., s), and at least one xio > xi

∗,i=1…., m. 

  The amount of congestion in the ith input of DMUo is denoted by si
c,where xio > xi

∗, and define it as: si
c, =

 xio − xi
∗  Eq. (23). 

max α 

s.t. 

∑ vixij + ∑ uryrj + σ ≤ 0
s
r=1

m
i=1 , j = 1,… , n,  

∑uryrk = 1

s

r=1

, 

∑ vixik − σ = β
m
i=1 , vi ≥ 0,    ur ≥ 0,α ≥ 0 σ, URS. 

 

E={j | ρ∗ = 1 }. (22) 

∃( l ϵ E)  s.t. for all j ( j ϵ E ) ⇒ x1l ≥ x1j. (23) 

∃ (t ϵ E)  s.t ∀ j ( j ϵ E ) ⇒ x2t ≥ x2j. (24) 
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Congestion is considered not present when  xio ≤ xi

∗ and si
c, = 0 . The sum of all si

c, is the amount of 

congestion in DMUo. For purposes of explanation, consider subFig adapted from Flegg and Allen [24]. 

Fig. 1. Schematic adapted from Flegg & Allen (for explanatory purposes). 

The set of efficient DMUs is E = {A, B, C, D, E, F}. As can be seen DMUF has the highest input using up 

among the efficient DMUs, i.e.  

Theorem 5. If DMU0
∗=x1

∗, x2
∗ , … . , xm

∗ , φ∗y1o + s1
∗, φ∗y2o + s2

∗ , … . , φ∗yso + ss
∗), then DMU0

∗ ∈ PPSTV. 

Theorem 6. si
c, = si

−c∗  where xio > xi
∗. 

Theorem 7. If for all i,i=1…, m, we have xio − xi
∗ ≤ 0, then there exists no congestion in DMUo. 

Hosseinzadeh et al. approach (Interval congestion) 

Consider n DMUs with m inputs and s outputs, with interval data, that is [9]: 

In other words, to measure congestion with interval data, one should first determine the efficiency interval of 

each DMU. To do so, they gained the efficiency of each DMU in the most pessimistic and the most optimistic 

cases, using the following two models introduced by Wang et al. [25] and Javanmard [26]. In the Model, which 

is the most pessimistic case in evaluating a DMU, they considered the unit under estimation with the highest 

inputs and the lowest outputs.  

As for the most optimistic case, Model (25) assumes the unit under evaluation with the lowest inputs and the 

highest outputs, and the other DMUs with the highest inputs and the lowest outputs. 

xij ∈ [xij
l , xij

u],  i=1…m. 
 

yrj ∈ [yrj
l , yrj

u ],  r=1…, s. 
 

φo
∗u = Max φ,  

s. t. 

 ∑ xij
l λj + λoxio

u + sio
− = xio

u ,n
j=1
j≠o

 i=1…, m, 

∑ yrj
uλj + λoyro

l + sro
+ =n

j=1
j≠o

φoyro
l ,   r=1…,s,     

   ∑ λj
n
j=1 = 1,    (λj,sio

− , sro
+ ),  j=1…, n, r=1…, s, i=1…, m .        

(25) 

φo
∗l = Max φ,  (26) 
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After determining the efficiency interval [φ∗l, φ∗u], they suggested the following method for computing 

congestion. With regard to the idea in this method, the highest input value for each component is specified 

to compute congestion among efficient DMUs. As was stated earlier, one need not consider a single DMU 

for selecting all the components. To this end, they defined a set E,as follows: 

E, is the largest efficient set that can maybe exist with the above data, i.e., it is the set of DMUs that are 

efficient in the best case. We aim to determine a congestion interval (i.e., upper and lower bounds) such that 

the congestion value associated with any combination of values occurring in the input and output intervals of 

a DMU belongs to the interval achieved. Considering the fact that inefficiency is the necessary condition for 

congestion, there exists no congestion in DMUs with φ∗l = φ∗u = 1, besides, since the DMUs in the set E′are 

efficient in their best case; they do not show congestion in this case. However, these DMUs might be 

inefficient in their worst case. Thus, there exists the possibility of congestion in this case for these DMUs. In 

computing congestion in the most optimistic case possible, the lowest input consumption of a DMU is 

compared with the highest input consumption of the DMUs belonging to the set E′ (i.e., those efficient in 

the best case). To this end, they found xi
∗uas follows: 

And in the most optimistic case possible, the highest input consumption of a DMU is contrasted with the 

lowest input consumption of the DMUs belonging to the set E′ (i.e., those efficient in the best case). They 

showed xi
∗u as follows: 

The lower bound of congestion in the ith input is denoted by DMUoby sio
cl  and define it as 

If sio
cl ≥ 0, the amount of congestion is indicated; otherwise, congestion is zero in the best case. Furthermore, 

they are denoted by sio
cu. The upper bound of congestion in the ith input of the DMU is defined as: 

If sio
cu ≥ 0, the amount of congestion is shown; otherwise, congestion is zero in the worst case 

Theorem 8. The interval [so
cl , so

cu]  indicates an upper and a lower bound for congestion present at DMUo. 

Jahanshahloo, et al. technique  

Their study started with a two-model method that was utilized to evaluate congestion [27]. Assume there are  

n observed DMUs, DMUj (xj, yj), j = 1, 2, ..., n, and all DMUj produces the same s outputs in (Possibly) 

different amounts, yrj, r =1, 2, ..., s, utilizing the same inputs, xij, i = 1, 2, ..., m, also in (Possibly) various 

amounts. All inputs and outputs are assumed to be nonnegative, but at least one input and one output are 

positive, i.e., xj = (x1j, ..., xmj) ≥ 0, xj ≠0 and yj = (y1j , ..., ysj) ≥ 0, yj ≠ 0. Then, to keep in contact with Cooper 

et al. [10], the method starts with the following version of a BCC model: 

∑ xij
uλj + λoxio

l + sio
− = xio

ln
j=1
j≠o

,  i=1…, m, 

∑ yrj
l λj + λoyro

u + sro
+ =n

j=1
j≠o

φoyro
u ,  r=1…, s, 

∑ λj
n
j=1 = 1, (λj,sio

− , sro
+ ),    j=1…, n, r=1…, s, i=1…, m . 

E, = {DMUj|φj
∗l = 1}, (27) 

For all i  i = 1,… ,m  ∃ti    s. t  xti
u = xi

∗u = max {xij
u|jϵE,}, (28) 

For all i  i = 1,… ,m  ∃ki    s. t  xki
l = xi

∗l = max {xij
l |jϵE,}. (29) 

sio
cl = xio

l − xio
u∗ ,    i=1…, m.                                                                                             (30) 

sio
cu = xio

u − xio
l∗ ,    i=1…, m. (31) 
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Here ε > 0 is a non-Archimedean element, described as smaller than any positive real number. This means 

that ε is not a real number. The standard procedure is to prevent any need for explicitly assigning a value to ε 

by utilizing the following two-step process. Step one: Maximize ϕ while ignoring the slacks, si
−, sr

+  in the 

objective. Step two: Replace ϕ with ϕ∗= max ϕ in Model (31) and maximize the sum of the slacks, then 

determine whether DMUo is efficient or inefficient in accordance with the sub definition. 

Definition 6 (BCC Efficiency). DMUo is efficient if and only if the following two conditions are both 

satisfied: 

I. φ∗ = 1. 

II. All slack variables are zero in optimal solutions. 

Definition 7 (BCC-Projection). For a BCC-inefficient DMUo,  

 BCC-projection, based on an optimal solution for Model (31), defined as follows: 

The improved activity (X̂o, Ŷo)is BCC-efficient. As explained in Cooper et al. [13], the (xiô, yrô) values together 

with the xij and yrj, as defined in Model (31), are utilized to construct the following new problem 

Finally, to identify the congesting inputs and to estimate their amounts, utilize i = 1, ..., m input constraints 

δi
− ≤ si

−∗ in Eq. (32) to obtain: 

Max ϕ + ε(∑ si
−m

i=1 +∑ sr
+s

r=1 ), 

s.t. 

∑ λjxij + si
− = xio,

n
j=1  i=1…, m, 

∑ λjyrj + sr
+ = yio,

n
j=1   r=1…., s, 

∑ λj = 1
n
j=1 ,      

λj, si
−, sr

+ ≥ 0,   

  j = 1,… , n   i = 1,… ,m,   r = 1,… . , s.                       

(31) 

(xiô = xio − si
−∗ , yrô = yro + sr

+∗). 
 

Max ∑ δi
−m

i=1 ,  

s.t. 

∑λjxij − δi
− = xiô

n

j=1

, i = 1,… , n, 

∑λjyrj = yiô

n

j=1

, r = 1,… , n, 

∑λj = 1

n

j=1

,  

δi
− ≤ si

−∗ , λj ≥ 0, j = 1,… . , n,  

δi
− ≥ 0, i = 1,… ,m.   

(32) 

si
−c∗ = si

−∗ − δi
−∗ , i=1…, m, (33) 
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where δi
−∗ is achieved from Eq. (32). si

−c∗is then the congesting amount in the total slack connected with si
−∗in 

input i = 1, ...,m, as achieved from Model (31) and δi
−∗is the (Maximum) amount of this total slack that can be 

assigned to completely technical (Non-congesting) inefficiency, as achieved from Eq. (32). 

Computation of congestion with production trade-offs 

This technique follows the signs in Podinovski's research [28], and let (P, Q), trade-offs between the inputs 

and/or outputs, show the possible simultaneous change to the inputs and outputs in the entire technology. 

Different examples of production trade-offs are discussed in [29], which assumes that k trade-offs: 

The use of trade-offs in Eq. (34) in the standard VRS technology leads to the expanded technology TVRS−TO, 

since the abbreviation TO stands for “trade-offs“, as in the following form: 

The output radial efficiency of DMUo in TV RS−to is defined as max {ϕ|(ϕXo,Yo) ϵTVRS−TO) 

The (A3) is redundant as it follows from (A1). Since (ϕ = 1, πt = 0, t = 1,… , k, d = 0, e = 0, λj = 1, j =

1,… , n, j ≠ o). 

is a feasible solution for the above model and the objective function maximizing ϕ, so, ϕ∗ ≥ 1. Therefore, A 

(4) can be deleted. This implies that the model is equal to the following LP formulation: 

(Pt, Qt),     t=1…., k. (34) 

TVRS−TO={(X,Y)|X≥ 0, Y ≥ 0 , X ≥ ∑ λjXj
n
j=1 + ∑ πtPt ,

k
t=1 Y ≤ ∑ λjYj

n
j=1 +

∑ πtQt ,∑ λj
n
j=1

k
t=1 = 1 λj ≥ 0 , πt ≥ 0 , j = 1,… . , n  , t = 1,… . , k}. 

(35) 

Max ϕ, 
 

s. t.∑λjXj

n

j=1

+∑πtPt , + d =

k

t=1

Xo, 
(A1) 

∑λjYj

n

j=1

+∑πtQt , − e = ϕ

k

t=1

Yo, (A2) 

∑λjXj

n

j=1

+∑πtPt , + d ≥ 0

k

t=1

, (A3) 

∑λjYj

n

j=1

+∑πtQt , − e

k

t=1

≥ 0, (A4) 

∑
λj
1,

n
j=1  , (A5) 

λ, π, e, d ≥ 0. (A6) 

Max ϕ, 

s.t. 

Xo ≥∑λjXj

n

j=1

+∑πtPt ,

k

t=1

 
(35) 
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The output radial efficiency of DMUo is equivalent to the optimal value φ∗ of the objective function in Model 

Eq. (35). Because of the constraints of the model, the aim DMU (Xo, φ∗Yo) is a valid member of the PPS 

TV RS−TO and located on its boundary. Therefore, the radial efficiency φ∗ of DMUo has the meaning of a 

technologically feasible radial enhancement factor for the outputs of the DMUo. It is a must to be aware of 

the introduction of trade-offs. Eq. (34) in the envelopment models is equal to the incorporation of weight 

restrictions. 

In the dual multiplier forms. In VRS DEA models with production trade-offs, the second step of the 

optimization procedure is a test for possible non-radial improvements to the radial targets. A linear program 

for this reason is developed as follows: 

Model (37) maximizes the sum of remaining slacks subject to the clear condition that the resulting efficient 

target has only nonnegative inputs. This step produces a fully efficient target of DMUo: Let λ∗, π∗, e∗, w∗and∗ 

be any optimal solution to Model (37). Define: 

Obviously, DMU(x̂o, ŷo) is Pareto-efficient in technology TV RS−TO. According to Theorem 1, if ϕ∗ = 1 and 

optimal vectors e∗ and d∗ are zero vectors, DMUo coincide with DMU (x̂o, ŷo) and is accordingly efficient. 

Then DMUo is inefficient and (x̂o, ŷo) can be regarded as its efficient target. 

ϕXo ≤∑λjYj

n

j=1

+∑πtQt ,∑λj

n

j=1

k

t=1

, 

∑λj = 1

n

j=1

, λ, π ≥ 0. 

uTQt − v
tpt ≤ 0,  t=1..., k.                                                                                                        (36) 

Max ∑ di
m
i=1 +∑ er

s
r=1 , 

s.t. 

∑λjXj

n

j=1

+∑πtPt , +w+ d =

k

t=1

Xo, 

∑λjYj

n

j=1

+∑πtQt , − e = ϕ
∗

k

t=1

Yo,  

∑λjXj

n

j=1

+∑πtPt , +w >= 0

k

t=1

, 

∑λj = 1

n

j=1

, 

λ, π, e, d ≥ 0. 

(37) 

x̂o =∑λj
∗xj +

n

j=1

∑πt
∗pt +w

∗

k

t=1

, 
(38) 

ŷo = ∑ λj
∗xj +

n
j=1 ∑ πt

∗Qt +w
∗k

t=1 . 
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Since it was told in Section 2, firstly, by applying Model (32), the BCC-projection of a DMUo, that is (x̂o, ŷo). 

According to Definition 2, which is obtained, it is utilized to compute the congestion. Similarly, at first, there 

was a weight limitation.  

They want to find the radius target of a DMUo utilizing Model (35), which will be utilized to obtain the 

correspondence efficient target in Model (37) according to Model (38). By incorporating the mentioned efficient 

target in Model (10).  

Where δi
−∗is obtained from Model (39). di

c∗ is then the congesting amount in the total slack connected with 

di
c∗in input i = 1, ...,m, as obtained from  Model (1), and δi

−∗ is the (Maximum) amount of this total slack that 

can be assigned to completely technical (Non-congesting) inefficiency, as obtained from Model (39). 

2.2|Multi-Stage Data Envelopment Analysis Congestion Model 

At last, to identify the congesting inputs and to estimate their amounts, they utilized i = 1, ...,m input 

constraints δi
− ≤ di

∗ in Model (39) to achieve [30]: 

Assume there are n DMUs and that each DMUj (j=1; 2; . . .; n) has m inputs to the first step, and S outputs 

from this step 𝒵sjo(s=1…, s). These S outputs then become the inputs to the second cycle and 𝒵opowhere 

o=0, 1…., O is the input or entered as an input of the existing step and other subsequent steps. The outputs 

from the second, third, and fourth steps are denoted as yrjo where r=1, 2…, R, vljowhere l=1, 2…, L and 

wkjo  where g=1, 2…, G. The weights of cycle 1, cycle 2, cycle 3, and cycle 4 are ηS
A, ur, μl andγk . The input 

weights of steps 1, 2, 3, and 4 are vi, vop, wop ando0p. They modified a one-step Färe et al. [9] method that 

proceeds in two steps into multi-stage DEA models. The first stage utilizes an ‘‘input-oriented’’ model as 

follows: 

max ∑ δi
−m

i=1 , 
 

s.t.  

∑ λjxij + ∑ πtpt
k
t=1 − δi

− = xiô
n
j=1  ,  i = 1,… , n, 

  

∑ λjyrj + ∑ πtQt
k
t=1 = yrô

n
j=1 ,   r = 1,… , n, 

∑λj = 1

n

j=1

, 

δi
− ≤ di

∗,  

λj ≥ 0, j = 1,… . , n, 

 δi
− ≥ 0, i = 1,… ,m, 

πt ≥ 0. 

(39) 

di
c∗ = di

∗-δi
−∗. (40) 

θ∗ = minθ, (41) 

s.t.  (∑ ηS
Azsjo) 

S
s=1 + (  ∑ uryrjo

s
r=1 ) + (  ∑ μlvljo  

L
l=1 ) + (∑ γkwjko

G
g=1 )  _yin ≥ 0.   (42) 

(  ∑ vixijo
s
r=1 ) + (∑ ηS

Azsjo  + 
S
s=1 ∑ vopzopo

s
r=1 ) + (∑ uryrjo

R
r=1 + ∑ wopzopo

Q
q=1 ) + 

(  ∑ μlvljo  
L
l=1 + ∑ oopzopo

s
r=1 )_θnxkn ≤ 0. 

(43) 

ηs
A, vi, ur, vopo, μl, wop, γk, oop ≥ 0.  



A glimpse of input congestion methods in data envelopment analysis 

 

124

 

  
The objective is to minimize all of the inputs of DMUo in proportion θ∗ where the optimal θ = θ∗* does not 

surpass unity and the non-negativity of the ηs
A, vi, ur, vopo, μl, wop, γk, oop and output implies that the value of 

θ∗ will not be negative under the optimization in Eq. (1).  

Technical efficiency is achieved by DMUo if and only if θ∗ = 1 Technical inefficiency is present in the 

performance of DMUo if and only if 0≤ θ∗ < 1 Second stage model: 

Note that the first i=1…, m qualities in Eq. (43) are replaced by Eq. (47). Thus, slack is not possible in the 

inputs. The fact that only the output can yield a nonzero slack is then referred to as ‘‘weak disposal’’. Hence, 

0=θ∗ ≤ β∗ and these results can be used for developing a ‘‘measure’’ of congestion: 

Combining Models (41)-(45) in a two-stage manner, they utilized this measure to identify congestion in terms 

of the following conditions: 

I. Congestion is identified as present in the performance of DMUo if and only if: 

II. Congestion is identified as not present in the performance of DMUo if and only if: 

Our proposed congestion model will multiply the congestion scores of each process cycle to check the 

presence or absence of congestion in the overall supply chain θ
o∗

βo
∗⁄ . 

Output-oriented multi-stage congestion model 

Technical efficiency is achieved by DMUo if and only if θ∗* = 1. Technical inefficiency is present in the 

performance of DMUo if and only if 0≤ θ∗ < 1. Second stage model: 

0≤ minθ = θ∗ ≤ 1.                                                                   (44) 

β∗ = minβ, (45) 

s.t.  (∑ ηS
Azsjo) 

S
s=1 + (  ∑ uryrjo

s
r=1 ) + (  ∑ μlvljo  

L
l=1 ) + (∑ γkwjko

G
g=1 )  _yin ≥ 0.                           (46) 

(  ∑ vixijo
s
r=1 ) + (∑ ηS

Azsjo  + 
S
s=1 ∑ vopzopo

s
r=1 ) + (∑ uryrjo

R
r=1 + ∑ wopzopo

Q
q=1 ) + 

(  ∑ μlvljo  
L
l=1 + ∑ oopzopo

N
r=1 ) _ βnxkn ≤ 0. 

(47) 

ηs
A, vi, ur, vopo, μl, wop, γk, oop ≥ 0.    

0≤ C(θ∗, β∗) =
θ∗

β∗
. (48) 

C(θ∗, β∗) ≤ 1. (49) 

C(θ∗, β∗) = 1.  

θ∗ = minθ, (50) 

(∑ ηS
Azsjo) 

S
s=1 + (  ∑ uryrjo

s
r=1 ) + (  ∑ μlvljo  

L
l=1 ) + (∑ γkwjko

G
g=1 )  _θnyin ≥ 0. (51) 

(  ∑ vixijo
s
r=1 ) + (∑ ηS

Azsjo  + 
S
s=1 ∑ vopzopo

s
r=1 ) + (∑ uryrjo

R
r=1 + ∑ wopzopo

Q
q=1 ) + 

(  ∑ μlvljo  
L
l=1 + ∑ oopzopo

N
r=1 ) _ xkn ≤ 0. 

(52) 

ηs
A, vi, ur, vopo, μl, wop, γk, oop ≥ 0.  

β∗ = minβ, (53) 

s.t. (∑ ηS
Azsjo) 

S
s=1 + (  ∑ uryrjo

s
r=1 ) + (  ∑ μlvljo  

L
l=1 ) + (∑ γkwjko

G
g=1 )  _βyin ≥ 0.      (54) 

(  ∑ vixijo
s
r=1 ) + (∑ ηS

Azsjo  + 
S
s=1 ∑ vopzopo

s
r=1 ) + (∑ uryrjo

R
r=1 + ∑ wopzopo

Q
q=1 ) + 

(  ∑ μlvljo  
L
l=1 + ∑ oopzopo

N
r=1 ) _ xkn ≤ 0. 

(55) 
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Combining Models (50)-(53) in a two-stage manner, they utilized this measure to identify congestion in terms 

of the following conditions, 

I. Congestion is identified as present in the performance of DMUo if and only if: 

II.   Congestion is identified as not present in the performance of DMUo if and only if: 

Our proposed congestion model will multiply the congestion scores of each process cycle to check the 

presence or absence of congestion in the overall supply chain θ
o∗

βo
∗⁄ . When the congestion scores of several 

independent stages occur together. 

Wua et al. (Congestion with undesirable outputs) 

Assume x, y, and u show the inputs, desirable outputs, and undesirable outputs, respectively. Proof of 

congestion in this scenario happens whenever reducing some inputs x can increase desirable outputs y and 

decrease undesirable outputs u concurrently. Before measuring this kind of congestion, the method should 

develop a method to solve the problem of undesirable outputs. So far, there have been several methods for 

addressing the undesirable output problem. In this study, the method of Seiford and Zhu [31] is chosen to 

deal with undesirable outputs. Since the input-oriented model may produce incorrect results in distinguishing 

congestion, this paper will concentrate on the output-oriented model [12]. The model is shown as follows: 

Where αt is a big enough positive number that can make every otj positive. The fourth constraint is utilized 

to trans form the undesirable output to a new variable, whose value is the larger the better, by adding a 

sufficiently positive constant to the negative amount of objectionable output. The third constraint is utilized 

to constrain the new changeable in the Possible Production Set (PPS). We call this model the BCC SZ model. 

When the constraints on λ are changed, we can get some other DEA models, for example:  ∑ λj
n
j=1  is free 

(CCR SZ model)  ∑ λj
n
j=1 ≤ 1 (FG SZ model) and  ∑ λj

n
j=1 ≥ 1 (ST SZ model)  The corresponding new model, 

defined as the unew model, for determining the congestion of DMU0, is shown as follows:  

ηs
A, vi, ur, vopo, μl, wop, γk, oop ≥ 0.  

C(θ∗, β∗) ≤ 1. (56) 

C(θ∗, β∗) = 1. (57) 

Max δ,  

s.t.  ∑ λjxij ≤ xio
n
j=1 ,  

∑ λjyrj ≥ yro
n
j=1 ,  

∑ λjotj ≥ δoto
n
j=1 .                                                                                                    (58) 

otj = −utj + αt,  

∑ λj = 1
n
j=1 ,  

λj ≥ 0,     i = 1,… ,m  , r = 1,… , s  , t = 1,… , k , j = 1,… . , n,  

Max δ,  

s.t. ∑ λjxij = xio
n
j=1 ,  

∑ λjyrj ≥ δyro
n
j=1 ,  

otj = −utj + αt,  
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Comparing Models (58) and (59) showed that the difference is when they have a different first constraint. The 

constraint of Model (58) is more relaxed than that of Model (59). The optimal solution of Model (59) is the 

feasible solution of Model (58). Also, Model (59) has a different PPS, which is closed, because of the first 

constraint. 

Definition 8. If the optimal value of the UNEW model, Model (59), satisfies z∗ =1, then we call DMU0 weakly 

efficient, corresponding to the UNEW model, or weakly efficient in short. 

Definition 9. Assume DMU0 is weakly efficient in the UNEW model. If it has (x̂, ŷ, û)ATNEW, x̂ ≤

xoand x̂ ≠ xo , ŷ ≤ yo , û > uo, where Tnew = {(x, y)| ∑ λjxij
n
j=1 = xio, ∑ λjyrj

n
j=1 ≤ yro, ∑ λjurj

n
j=1 = uro,

∑ λj = 1 , λj ≥ 0n
j=1 }. Then the DMU evidences congestion. 

Definition 10. Assume DMU0 is weakly efficient in the UNEW model. If it has (x̂, ŷ, û)ATNEW, x̂ ≤

xoand x̂ ≠ xo , ŷ ≥ yo , û ≥ uo, where Tnew = {(x, y)| ∑ λjxij
n
j=1 = xio, ∑ λjyrj

n
j=1 ≥ yro, ∑ λjurj

n
j=1 ≤ uro,

∑ λj = 1 , λj ≥ 0n
j=1 }. Then the DMU evidences congestion. 

Theorem 9. A weakly efficient DMU0 of the UNEW model evidences congestion if and only if it is not 

weakly (BCC SZ) DEA efficient, if and only if it is neither weakly (FGSZ)DEA efficient nor weakly 

(STSZ)DEA efficient. 

Abbasi et al. (Estimation of congestion in free disposal Hull models using data envelopment 

analysis)  

In this technique, first, concisely describe some characteristic property of the FDH model. Consider n DMUs 

where each DMUj (j =  1, . . . , n) uses m inputs xij (i =  1, . . . , m) to produce s outputs yrj (r =  1, . . . , s). Let 

xj = (x1j, . . . , xmj)Tand yj = (y1j, . . . , ysj)T We will also assume that  xj ≥ 0 , xj ≠ 0 and yj ≥ 0, yj ≠ 0 The 

PPS T is shown as: 

This set is denoted by TFDH, concerning the assumptions of deterministic and free disposability of the 

production technology: 

The additive FDH model to evaluate the efficiency of an exceptional DMUp (p ∈ {1, . . . , n}) under the 𝑇FDH 

is as follows: 

∑ λjotj ≥ δoto
n
j=1 ,                                                                                                   (59) 

∑ λj = 1
n
j=1 ,  

λj ≥ 0, i = 1,… ,m  , r = 1,… , s  , t = 1,… , k , j = 1,… . , n  

T = {(x, y)| ∈ R+
m+s| y can be produced from x}.                                                                  (60) 

TFDH = {(x, y):∑λjxj ≤ x

n

j=1

,∑λjyj ≥ y

n

j=1

,∑λj = 1,   λj ∈ (0,1), j = 1, . . , n}

n

j=1

. (61) 

Max ∑ si
− + ∑ sr

+s
r=1

m
i=1 ,  

s.t. ∑ λj
n
j=1 xij + si

− = xip, i=1…, m,  

∑ yrjλj
n
j=1 − sr

+ = yrp,  r=1…, s, (62) 

∑ λj
n
j=1 = 1,  λj ∈ (0,1), j=1…, n,   

si
− ≥ 0 ,   sr

+ ≥ 0,  i=1…, m,  r=1…, s.  
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Definition 11 (FDH efficiency). Consider Model (62). If the optimal objective value is zero, then DMU𝑝 is 

said to be FDH efficient. It is worth noting that, to the CCR and BCC models, the FDH model does not 

require the convexity assumption. So, this model has a discrete nature, which causes the efficient target point 

for an inefficient DMU to be assigned as a point among only actually observed DMUs, so the efficiency 

analysis is done relative to the other given DMUs instead of a hypothetical efficiency frontier. This has the 

advantage that the achievement goal for an inefficient DMU given by its efficient target point will be more 

credible than in cases of CCR and BCC models.  

 Definition 12 (FDH output efficiency). Consider the following model. If zFDH= 0, then DMUp is said to 

be FDH output efficient: 

Definition 13 (congestion). Evidence of congestion is here in the performance of any DMU, when a 

decrease in one or more inputs is connected with increases that are maximally possible in one or more outputs 

without worsening other inputs or outputs. Conversely, congestion is said to happen when some of the 

outputs that are maximally possible are reduced by increasing one or more inputs without improving any 

other inputs or outputs. 

Definition 14 (strong congestion). If a proportionate reduction in all inputs of a DMU warrants an increase 

in all maximally possible outputs, then strong congestion happens. 

Definition 15 (technical efficiency). Efficiency is obtained by DMU0 if and only if it is not possible to 

improve some of its inputs or outputs without worsening some of its other inputs or outputs. 

Definition 16 (technical inefficiency). Technical inefficiency is said to exist in the performance of DMU0 

when the evidence shows that it is possible to improve some input or output without worsening some other 

inputs or outputs. 

In TFDH, the efficiency covering is a staircase based on those given DMUs that are not dominated by other 

given DMUs. It should be noted that evaluating congestion in usual models for convex PPS has been studied 

on TNEW, which is a PPS without an input disposability element. Let us denote TNEW corresponding to TFDH 

as TNFDH, which can be defined as follows: 

A new set is introduced as follows: 

It seems that the set of FDH−1is achieved by reversing the sign of the input inequalities in TFDH The following 

model is used to deal with the congestion occurrence in the FDH model: 

zFDH=max ∑ sr
+s

r=1 ,  

s.t. ∑ λj
n
j=1 xij ≤ xip,  i=1…, m,  

∑ yrjλj
n
j=1 − sr

+ = yrp,  r=1…, s, (63) 

∑ λj
n
j=1 = 1  λj ∈ (0,1), j=1…, n,   

si
− ≥ 0 ,   sr

+ ≥ 0,  i=1…, m,  r=1…, s.  

TNFDH = {(x, y):∑λjxj = x

n

j=1

,∑λjyj ≥ y

n

j=1

,∑λj = 1,   λj ∈ (0,1), j = 1, . . , n}

n

j=1

. (64) 

FDH−1 = {(x, y),∑λjxj ≥ x

n

j=1

,∑λjyj ≥ y

n

j=1

,∑λj = 1, λj ∈ (0,1), j = 1, . . , n}.   

n

j=1

 (65) 

zFDH−1= max ∑ sr
+s

r=1   
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They described the above model “FDH−1output additive model.” To see what is involved, they commented 

that the input (like the output) constraints take the form in this adaptation of additive models, the objective 

is to maximize the outputs without reducing any of the input constraints take the from ∑ λj
n
j=1 xij ≥ xip.Since, 

in this adaptation of additive models, the objective is to maximize the outputs without reducing any of the 

inputs. 

Definition 17 (𝐅𝐃𝐇−𝟏output efficiency). Consider the Model (66). If ZFDH−1= 0, then it is said to be FDH−1 

output efficiently. 

Lemma 1. DMUp is FDH−1output efficient if and only if the following system has no solution: 

Definition 18 (congestion in the FDH model). Le DMUp t = (xp, yp) be FDH−1output efficient; if there 

exists DMUk = (xk, yk), such that xk≤xp, xk ≠ xp and  yp≤yk, yp ≠ yk, then DMUp has evidence of congestion. 

Definition 19 (strong congestion in the FDH model). Let DMUp = (xp, yp) be congested in FDH model; 

if there exists DMUk = (xk, yk), such that xk < xp and yk > yp, then DMUp has evidence of strong congestion. 

Lemma 2. Let DMUp be FDH−1 output efficient; then DMUp has evidence of congestion if and only if the 

following system has a solution: 

Lemma 3. DMUp is not FDH output efficient if and only if the following linear system has a solution: 

Theorem 10. Let DMUp be FDH−1output efficient; then 𝑍FDH, DMUp has evidence of congestion if and 

only if DMUp is not FDH output efficient. 

By utilizing Theorem 13, we can provide the following procedure to evaluate congestion in the FDH model. 

s.t. ∑ λj
n
j=1 xij ≥ xip, i=1…, m,  

∑ yrjλj
n
j=1 − sr

+ = yrp,  r=1…, s, (66) 

∑ λj
n
j=1 = 1, λj ∈ (0,1)  

si
− ≥ 0,   sr

+ ≥ 0,  j=1…, n, i=1…, m, r=1…, s.  

∑λj

n

j=1

xj ≥ xp,  

∑λjyj

n

j=1

≥ yp ,∑λjyj

n

j=1

≠ yp, (67) 

∑ λj
n
j=1 = 1, λj ∈ (0,1), j = 1,… , n.  

∑λj

n

j=1

xj ≤ xp,  

∑λjyj

n

j=1

≥ yp ,∑λjyj

n

j=1

≠ yp, 

∑ λj
n
j=1 = 1  λj ∈ (0,1), j = 1,… , n. 

(68) 

∑λjyj

n

j=1

≥ yp ,∑λjyj

n

j=1

≠ yp,  

∑ λj
n
j=1 = 1  λj ∈ (0,1), j = 1,… , n. 

(69) 
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I. Solve Model (66) corresponding to (xp, yp); let (λ∗, s+
∗
) be the optimal solution of it. Let ŷp = yp + s

+∗ It is 

evident that (xp, ŷp) is FDH−1 output efficient. 

II. Solve Model (63) for (xp, ŷp).  

III. If zFDH> 0, then DMUp is congested. 

Models (63)-(66) are mixed-integer programming, but can show that it does not need any mathematical 

programming problem to solve. Actually, an enumeration algorithm based on pairwise comparisons, similar 

to Tulken’s enumeration algorithm for the case of the radial FDH model, can be utilized. Now, based upon 

the foregoing procedure and previous explanation, they proposed the following algorithm. The proposed 

algorithm includes two parts. In Part (a), the existence of congestion in the performance of DMUp, and Part 

(b), if DMUp is recognized to be congested in Part (a), the amount of congestion for each input, as well as the 

reduction amount of each output due to congestion, will be estimated. 

Proposed algorithm 

Part (a) 

Step 5. Calculate the optimal value of Model (7) by the following equation: 

Where 

Step 6. Let ŷp = yp + s
+∗ , where s+

∗
= yq − yp Obtain the optimal value of Model (63) by: 

Where 

Step 7. If ZFDH > 0, then DMUp is congested, so go to Part (b); furthermore, if there exists j ∈ D̂psuch that xj 

< xp and yj > ŷp}, then, based on Definition 4, DMUp is strongly congested. If ZFDH= 0, then DMUp is not 

congested and stops. 

Part (b) 

Step 8. Define Kp as follows: 

Then calculate 

Step 9. Define TP as follows: 

FDH−1 =∑(yrq − yrp) = MaxjϵD

s

r=1

∑(yrj − yrp),

s

r=1

 (70) 

Dp =  {j ∈  {1, . . . , n} | xj ≥ xpand yj ≥ yp}.    (71) 

zFDH = maxjϵD̂∑(yrj − ŷrp),

s

r=1

 (72) 

D̂p= {j ∈  {1, . . . , n} | xj ≤ xp, yj≥ ŷp} (73) 

kp = {j ∈ D̂p|ZFDH = ∑ (yrj − ŷrp)}
s
r=1 . (74) 

α∗ = min∑(xip − xij)

m

i=1

. (75) 

TP = {jϵkp|α
∗ = ∑ (xip − xij) 

m
i=1 }. (76) 
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For j ∈ TP define si

c∗as the amount of congestion in the ith input of DMUP and  ŝr
+∗as a reduction in the 

amount of rth output due to congestion, as follows: 

α∗ = ∑ si
c∗m

i=1  is the total amount of congestion in all inputs of DMUp. 

Corollary 1. If D̂p= 0, congestion has no appearance at DMUp. 

Hajihosseini et al. approach 

One of the famous basic DEA models is “Multipplier form of BCC with output oriented” [13]. The efficiency 

for DMUo of BCC is output-oriented. The efficiency for DMUo is evaluated by this model, which states that 

each DMU has m inputs and s outputs: 

Where the decision variables are the weight vectors ut = (u1, … . , us) , v
t = (v1, … . , vm) and xj

t = (x1j, … . , xmj), 

yj
t = (y1j, … . , ymj) are the input and output vectors for DMUj (j = 1, …, n). If the optimal value of the above 

model is equivalent to one, DMUo is efficient; otherwise, it is inefficient. The equivalent linear programming 

of the above model will be substituted as follows. 

As we can see in the feasible region of Model (78) vtxj + v0 − u
tyj ≥ 0 ( j = 1, …, n). In this model, the DMU 

is more favored when it has a smaller value. Hence, when we minimize the vtxj + v0 − u
tyj ≥ 0( j = 1, …, n), 

we can reach our purpose. Therefore, rather than solving the above model, one may minimize the vtxj + v0 −

utyj ≥ 0 (j = 1…, n) with respect to the same region. Therefore, based on Noura and Hoseini [32] 

methodology, we proposed the following Multi-Objective Linear Programming (MOLP) to explain CSW: 

The CSW with equivalent weights is applied to solve the above MOLP as follows: 

si
c∗ = xip − xij, i=1…., m,  

 ŝr
+∗ = yrj − ŷrp,  r=1…., s.  

Min 
vtx0+v0

uty0
,  

s.t.   
vtj+v0

utj
 ≥ 1,  j=1….,n, (77) 

ut ≥ 1sε,  

vt ≥ 1mε,  

Min vtx0 + v0,  

s.t. uty0 = 1,  

vtxj + v0 − u
tyj ≥ 0,  (78) 

ut ≥ 1sε,  

vt ≥ 1mε,  

Min vtxj + v0 − u
tyj, j=1…, n,  

s.t. vtxj + v0 − u
tyj ≥ 0, j=1…, n, (79) 

ut ≥ 1sε,   

vt ≥ 1mε.  

Min ∑ (  vtxj + v0 − u
tyj),             

n
j=1   
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Suppose (u∗, v∗)t will be the optimal solution of the Model (79), so it is considered as CSW, and for ranking 

and comparing DMUs, they utilize the efficiency score of DMUj ( j = 1, …, n) as φj
∗ =

v∗txj+v0
∗

u∗
t
yj

 When φj
∗ is 

equivalent to one can conclude the DMU under evaluation (DMUj) is efficient. Now, As Noura and Hoseini 

[32]. E is defined as follows: E = {j: φj
∗ = 1}. And xi

∗ is defined as the highest value of each input for all 

elements in the set of E. The following sub-definition is suggested to identify congestion. 

Definition 20. Congestion in DMUo eventually occurs if the optimal solution of φj
∗ for DMUo, the following 

condition is satisfied: φj
∗ > 1 and there is at least one xio > xi

∗, i= 1, ..., m. The amount of congestion in the 

ith input of DMUo is denoted by si
c, as follows: 

The sum of all si
c, is the amount of congestion in DMUo. Congestion does not present when xio ≤ xi

∗ or si
c, = 0 

for all i =1, …, m. 

Theorem 11. The amount of congestion in the proposed method is equal to the amount of congestion in the 

Cooper et al. method, but vice versa is not true. 

Noura and Hoseini's method 

Assume there are n DMUs that are evaluated in terms of m inputs and s outputs [32], [33]. Let xij and yrj be 

input and output values of DMUj for i=1, ..., m and r=1, …, s, spot BCC model. The efficiencies of the 

DMUs utilizing weight restrictions are measured by the sub-model (11). 

Where pm∗2m−2=(pink) and qs∗2s−2 = (qrt) are matrices that are connected with weight restrictions as 

described below. Such as, if the ratio of weights for the initial and ith of input and initial and rth of output is 

as follows: 

s.t.  vtxj + v0 − u
tyj ≥ 0,              (80) 

ut ≥ 1sε,  

vt ≥ 1mε.  

si
c, = xio − xi

∗.  

Min ∑ vixip
n
i=1 + vo,  

s.t.  ∑ uryrp = 1
s
r=1 , (82) 

∑ vixip
n
i=1 + vo −∑ uryrj ≤ 0

s
r=1 , j=1…, m,                            

∑vipik ≤ 0,

m

i=1

 k = 1,… . ,2m − 2, 

∑urqrt ≤ 0, t = 1,… . ,2s − 2,

m

i=1

 

 

ur ≥ ε,   r=1…, s,  

vi ≥ ε,  i=1…, m,       

l1i ≤
vi

v1
≤ u1i ,   l1ivi ≤ vi ≤ u1iv1, i = 2,… . . , m.  

L1r ≤
ur
u1
≤ U1r,   L1ru1 ≤ ur ≤ U1ru1,   r = 2,… . .,  
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Where l1i and u1i   are the lower and upper bounds of  

vi

v1
  and L1r and  U1r  are the lower and upper bounds of 

ur

u1
. In this case, the matrices P and Q are defined as follows: 

Congestion with weight restriction utilizing common weights: Based on Noura and Hoseini [32]. 

Methodology, they proposed the following MOLP with weight restriction utilizing a common set of weights, 

Model (2). 

Where the decision variables are the weight vectors vt = (v1, …… , vm)u
t = (u1, …… , us)and xj

t =

(x1j, …… , xmj), yj
t = (y1j, …… , ysj) are the input and output vectors for DMUj(j = 1…, n). The equivalent 

weights method is applied to solve the above MOLP. It also assumes that all weights are equivalent to one. 

As a result, we obtain Model (3). 

This implies Model (4). 

P=[ 
l12   −u12    l13   −u13 …… .
−1       1        0      0 ⋮
…       . . .         …     ⋯ …… . .

].  

Q=[ 
𝐿12   −𝑈12    𝐿13   −𝑈13 …… .
−1       1        0      0 ⋮
…       . . .         …     ⋯ …… . .

].  

Min vtxj + vo − u
tyj,  j=1…., n,  

s.t.         vtxj+vo − u
tyj ≥ 0,   j=1…., n,                      

∑vipik ≤ 0,

m

i=1

 k = 1,… . ,2m − 2, (83) 

∑urqrt ≤ 0, t = 1,… . ,2s − 2,

m

i=1

  

ut ≥ 1sε,    

vt ≥ 1mε,  

min ∑ vtxj
n
i=1 + vo − u

tyj,  

vtxj+vo − u
tyj ≥ 0,  j=1….,n,  

∑vipik ≤ 0, k = 1,… . ,2m − 2,

m

i=1

 (84) 

∑urqrt ≤ 0, t = 1,… . ,2s − 2,

m

i=1

  

ut ≥ 1sε,    

 vt ≥ 1mε.    

min ∑ vtxj
n
i=1 + vo − u

tyj,  

vtxj+vo − u
tyj − ∆j= 0,  

∑vipik ≤ 0,

m

i=1

  

vtxj+vo − u
tyj − ∆j= 0, j = 1… . , n,  (85) 

∑vipik ≤ 0,

m

i=1

k = 1,… . ,2m − 2,  

∑urqrt ≤ 0, t = 1,… . ,2s − 2,

m

i=1
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From vtxj+vo − u
tyj − ∆j= 0, we have vtxj+vo − u

tyj = ∆j. Hence, we obtain Model (5). 

Now assume (u∗, v∗)t will be the optimal solution of Problem (86), which is named the Common Set of Weights 
(CSW) with weight restriction for ranking and comparing DMUs. According to the achieved CSW, the 

efficiency score of DMUj (j = 1, …,n) will be φj
∗ =

v∗
t
xj+v0

∗

u∗
t
yj

 If φj
∗ is equivalent to one, then the DMU under 

evaluation is efficient. Now, according to Noura and Hoseini [32], the efficient set of DMUs (E) is defined 
as follows:  

The highest value in each input among DMUs of E for all components is introduced with xi
∗ = max {xij: j ∈

E}, j=1…., n. So, the following revised definition is suggested to identify congestion. 

Definition 21. Congestion in DMUo eventually happens if for the optimal solution of DMUo φ0
∗ , the 

following condition is satisfied φj
∗ > 1  and there is at least one xio > xi

∗, i=1…., m. 

The amount of congestion in the ith input of DMUo is shown with sio
c  as follows: sio

c = xio − xi
∗ 

The sum of all sio
c  is the amount of congestion in DMUo. 

Congestion does not show in DMUo when xio ≤ xi
∗ or  sio

c  for all i=1,,m. 

Karimi et al. approach 

In this research, they considered n DMUs shown by {(xj, yj), j = 1, … , n}, they assumed that each DMU 

produces the same set of outputs by consuming the same set of inputs, and the sole dissimilarity may be in 

the quantity of inputs and outputs. For each DMUj (Where j=1,…,n), they denoted the non-negative input 

and output vectors by xj = (x1j, … . , xmj)
t, yj = (y1j, … . , ysj)

t (Where, t is the sign of transposition) [33]. For 

the sake of simplicity in the notations, they utilized xj = [x1, … . , xn]
t and yj = [y1, … . , yn]

t to denote, 

respectively, the m × n input matrix and the s × n output matrix. Ordinary DEA models assume that all data 

are allowed to take positive real values. Although in many practical cases, some inputs and/or outputs can 

only take integer values. Lozano and Villa [34], [35] were the pioneers in paying attention to this difference. 

They introduced integer constraints into DEA models and proposed a MILP model for evaluating the 

efficiency of DMUs. In the same context, Kazemi and Kuosmanen [36] did some studies in integer-valued 

∑vipik ≤ 0,

m

i=1

  

ut ≥ 1sε,  

vt ≥ 1mε,  

  ∆j≥ 0.  

Min, ∑ ∆j
n
i=1 ,  

vtxj+vo − u
tyj − ∆j= 0, j = 1… . , n, (86) 

∑vipik ≤ 0,

m

i=1

 k = 1,… . ,2m − 2,  

∑urqrt ≤ 0,

m

i=1

 t = 1,… . ,2s − 2,  

ut ≥ 1sε,  

 vt ≥ 1mε,  

∆j≥ 0.  

E= {j: φj
∗ = 1}.  

sio
c =∑sio

c

m

i=1

.  
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DEA. The works of Kazemi and Kuosmanen [36] are based on some dictum. For the sake of completeness 

of the current paper, they presented a summarized description of their dictum. To this method, they supposed 

that T is the PPS of the integer-valued DEA, defined by: T = {(x, y)|x ∈ Z+
m can produce y ∈ Z+

s }. 

The dictum of Kazemi and Kuosmanen [37] is as follows: 

I. Envelopment: (xj, yj) ∈ T:for all j = 1, … , n. 

II. Natural disposability: (x,y)∈T and (u,v)∈ Z+
(m+s)

:y≥ v → (x + u, y − v) ∈ T.       

III. Natural convexity: If (x1, y1), (x2, y2) ∈ T and (x,y)=λ(x1, y1) + (1 − λ)(x2, y2) where λ ∈ [0,1] then (x,y)∈

Z+
(m+s) → (x, y) ∈ T 

IV. Natural divisibility: (x,y)∈ T and ∃λ ∈ [0,1]: (λx, λy) ∈ Z+
(m+s) → (λx, λy) ∈ T 

V. Natural augment ability: (x,y)∈ T and ∃λ ≥ 1(λx, λy) ∈ Z+
(m+s) → (λx, λy) ∈ T. 

These dictums are integer variants of the standard dictums in conventional DEA. Exactly, the dictums are 

dissimilar from standard dictums only in the type of input and output vectors that must be integer-valued. 

More detailed descriptions of these dictums can be found in Kazemi and Kuosmanen [36], [37]. According 

to the presented axioms, one can construct a difference of PPSs. In this research, they used the following 

PPS satisfying the dictums 1, 2, and 3: 

Based on this PPS, Kazemi and Kuosmanen [42], [43] showed an input-oriented radial model. In their model, 

the input and output variables are classified into two categories. The classification is based on the type of the 

variables, i.e., whether they are continuous or integer. In the following, they showed an output-oriented 

version of their model. In this model, I stand for integer input/output, and the subsets of integer-valued and 

real-valued inputs, integer-valued and real-valued outputs are denoted by II, INI, OIandONIrespectively (where 

INI means non-integer). Model (87): 

TVRS
IDEA = {(x, y) ∈ Z+

(m+s)|x ≥∑λjxj

n

j=1

, y ≤∑λjyj,∑λj = 1 , λj ≥ 0 for all j}

n

j=1

n

j=1

.  

Max [φ + ε(∑ si
− + ∑ sr

+ +∑ sr
l )]m

i=1
s
r=1

m
i=1 , (87) 

s.t. ∑ λjxij
n
j=1 + si

− = xio,    i ∈ I,  

∑λjyrj

n

j=1

− sr
+ = φyro, r ∈ O\OI,  

∑ λjyrj
n
j=1 − sr

+ = ŷr, r ∈ OI,  

ŷr =  φyro   + sr
l , r ∈ OI,  

∑λj = 1,

n

j=1

  

si
− ≥ 0, for all j,  

sr
l ≥ 0, for all r = 1,… . , p,  

si
− ∈ Z+,  

sr
+ ≥ 0, for all r,  

ŷr ∈ Z+, i ∈I,  

r ∈ OI,  

λj ≥ 0, j = 1,… , n,  
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Where ε  is a small non-Archimedean positive number and λ = (λ1, λ2, … . . , λn)
t is a column vector of 

unknown variables that are often referred to as structural or intensity variables. They are utilized for 

connecting the input and output vectors via convex combination. Variables sr
+, si

−, sr
l  represent the non-radial 

slack variables, and in the end ŷr ∈ Z+ is the integer-valued reference point for outputs OI. The objective of 

this model amounts to finding the maximum possible extension that can be done on outputs without any 

need to use up more inputs.  

 We note that the difference between congestion and technical inefficiency relies on the fact that, in the case 

of technical inefficiency, it is possible to decrease the inputs without reducing output. The outputs (Or 

increasing the outputs without increasing the inputs). In other words, technical inefficiency can be considered 

as an excess that we utilize in some inputs or as a shortfall that we produce in some outputs. So, when there 

is congestion in the system, any decrement in the inputs leads to some increments in (At least) one or more 

outputs; without worsening any other inputs or outputs (Or, in a similar way, any increment of inputs leads 

to some decrements in, at least, one or more outputs; without improving any other input or output). 

3|Conclusion 

This comprehensive review examined various methodologies developed within DEA for assessing congestion 

and inefficiencies in DMUs. The study categorized approaches based on their focus, such as input and output 

orientations, multi-stage models, weight restrictions, and techniques addressing undesirable outputs, integer 

data, and production trade-offs. 

Notable models include the classical DEA formulations extended to detect and measure congestion 

phenomena, the efficiency interval and projection methods, and advanced frameworks incorporating 

production trade-offs and weight restrictions. The review highlighted the distinction between congestion and 

technical inefficiency, emphasizing that congestion occurs when increased inputs can paradoxically lead to 

reduced outputs without worsening other parameters. Several innovative models, like the FDH (Free disposal 

Hull) and its variants, were explained, providing credible, data-driven congestion measures that rely on 

observed data points.  

The article discussed algorithms, projection techniques, and the integration of weights to identify and quantify 

congestion levels, including strong and weak congestion scenarios. The synthesis underscores that these 

varied DEA techniques offer robust tools for researchers and practitioners aiming to diagnose, measure, and 

improve operational efficiency amid resource overuse, ultimately enriching the analytical capabilities for 

performance evaluation in complex systems. 

Conflict of Interest Disclosure 

All authors certify that they have no affiliations with or involvement in any organization or entity with any 

financial or non-financial interest in the subject matter discussed in this manuscript. 

Data Availability Statement 

The datasets used and/or analyzed during the current study are not publicly available due to [reason if 

applicable], but can be made available by the corresponding author when scientifically justified. 

Funding Statement 

The authors confirm that no financial support was provided for the research, authorship, or publication of 

this article. 

References 

[1]  Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. 

European journal of operational research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8 



A glimpse of input congestion methods in data envelopment analysis 

 

136

 

  
[2]  Koopmans, T. C. (1951). Analysis of production as an efficient combination of activities. Analysis of 

production and allocation, 158(1), 33. https://www.sciepub.com/reference/39504 

[3]  Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). “Multilateral productivity comparisons 

when some outputs are undesirable: A nonparametric approach.” Review of economics and statistics, 71(1), 

90–98. https://doi.org/10.2307/1928055 

[4]  Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale 

inefficiencies in data envelopment analysis. Management science, 30(9), 1078–1092. 

https://doi.org/10.1287/mnsc.30.9.1078 

[5]  Stigler, G. J. (1976). The xistence of x-efficiency. The American economic review, 66(1), 213–216. 

https://www.jstor.org/stable/1804963 

[6]  Leibenstein, H. (1966). Allocative efficiency vs." x-efficiency". The American economic review, 56(3), 392–

415. https://www.jstor.org/stable/1823775%0A 

[7]  Färe, R., & Svensson, L. (1980). Congestion of production factors. Econometrica: Journal of the econometric 

society, 48(7), 1745–1753. https://doi.org/10.2307/1911932 

[8]  Färe, R., & Grosskopf, S. (1983). Measuring congestion in production. Zeitschrift für nationalökonomie 

journal of economics, 43(3), 257–271. https://www.jstor.org/stable/41796223 

[9]  Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985). The measurement of efficiencies of production. Boston: 

Kluwer-Nihoff Publishing. https://doi.org/10.1007/978-94-015-7721-2 

[10]  Cooper, W. W., Thompson, R. G., & Thrall, R. M. (1996). Introduction: Extensions and new 

developments in DEA. Annals of operations research, 66, 3–45. https://doi.org/10.1007/bf02125451 

[11]  Brockett, P. L., Cooper, W. W., Wang, Y., & Shin, H. C. (1998). Inefficiency and congestion in Chinese 

production before and after the 1978 economic reforms. Socio-economic planning sciences, 32(1), 1–20. 

https://B2n.ir/rh2344  

[12]  Cooper, W. W., Seiford, L. M., & Zhu, J. (2000). A unified additive model approach for evaluating 

inefficiency and congestion with associated measures in DEA. Socio-economic planning sciences, 34(1), 1–

25.  https://www.deafrontier.net/papers/SEPScongestion.pdf 

[13]  Cooper, W. W., Seiford, L. M., & Zhu, J. (2001). Slacks and congestion: Response to a comment by R. 

Färe and S. Grosskopf. Socio-economic planning sciences, 35(3), 205–215. 

https://doi.org/10.17485/ijst/2015/v8i6/61948 

[14]  Färe, R., Grosskopf, S., & Lovell, C. A. K. (1994). Production frontiers. Cambridge University Press. 

https://B2n.ir/nf7981 

[15]  Cooper, W. W., Gu, B., & Li, S. (2001). Note: Alternative treatments of congestion in DEA-a response to 

the Cherchye, Kuosmanen and post critique. European journal of operational research, 132(1), 81–87. 

https://www.sciencedirect.com/science/article/pii/S0377221700001764 

[16]  Cherchye, L., Kuosmanen, T., & Post, T. (2001). Alternative treatments of congestion in DEA: A 

rejoinder to Cooper, Gu, and Li. European journal of operational research, 132(1), 75–80. 

https://B2n.ir/qt7156 

[17]  Sueyoshi, T., & Sekitani, K. (2009). DEA congestion and returns to scale under an occurrence of multiple 

optimal projections. European journal of operational research, 194(2), 592–607. 

https://doi.org/10.1016/j.ejor.2007.12.022 

[18]  , A., Lotfi, F. H., & others. (2015). Congestion in DEA under weight restriction using common weights. 

Journal of mathematical extension, 10, 121–133. https://ijmex.com/index.php/ijmex/article/view/367 

[19]  Färe, R., Grosskopf, S., & Lovell, C. K. (1985). The measurement of efficiency of production (Vol. 6). Springer 

Science & Business Media. https://B2n.ir/ff1558 

[20]  Cooper, W. W., Deng, H., Huang, Z. M., & Li, S. X. (2002). A one-model approach to congestion in data 

envelopment analysis. Socio-economic planning sciences, 36(4), 231–238. https://B2n.ir/es2070  

[21]  Tone, K., & Sahoo, B. K. (2004). Degree of scale economies and congestion: A unified DEA approach. 

European journal of operational research, 158(3), 755–772. https://doi.org/10.1016/S0377-2217(03)00370-9 

[22]  Brockett, P., Cooper, W., Deng, H., Golden, L., & Ruefli, T. (2004). Using DEA to identify and manage 

congestion. Journal of productivity analysis, 22, 207–226. https://doi.org/10.1007/s11123-004-7574-0 



Jokar and Hadi Vencheh |J. Intell. Decis. Comput. Model. 1(2) (2025) 107-137 

 

137

 

  

[23]  Noura, A. A., Lotfi, F. H., Jahanshahloo, G. R., Rashidi, S. F., & Parker, B. R. (2010). A new method for 

measuring congestion in data envelopment analysis. Socio-economic planning sciences, 44(4), 240-246. 

https://doi.org/10.1016/j.seps.2010.06.003 

[24]  Flegg, A. T., & Allen, D. O. (2009). Congestion in the Chinese automobile and textile industries revisited. 

Socio-economic planning sciences, 43(3), 177–191. https://doi.org/10.1016/j.seps.2008.10.003 

[25]  Wang, Y. M., Greatbanks, R., & Yang, J. B. (2005). Interval efficiency assessment using data envelopment 

analysis. Fuzzy sets and systems, 153(3), 347–370. https://doi.org/10.1016/j.fss.2004.12.011 

[26]  Javanmard, M., & Mishmast Nehi, H. (2019). A solving method for fuzzy linear programming problem 

with interval type-2 fuzzy numbers. International journal of fuzzy systems, 21, 882–891. 

https://doi.org/10.1007/s40815-018-0591-3 

[27]  Davoudi, N., Hamidi, F., & Mishmast Nehi, H. (2023). A method for solving interval type-2 Triangular 

fuzzy Bilevel linear programming problem. Yugoslav journal of operations research, 33(1), 71–90. 

https://doi.org/10.2298/YJOR210715027H 

[28]  Podinovski, V. V. (2007). Computation of efficient targets in DEA models with production trade-offs 

and weight restrictions. European journal of operational research, 181(2), 586–591. 

https://doi.org/10.1016/j.ejor.2006.06.041 

[29]  Podinovski, V. V. (2004). Production trade-offs and weight restrictions in data envelopment analysis. 

Journal of the operational research society, 55(12), 1311–1322. https://doi.org/10.1057/palgrave.jors.2601794 

[30]  Gattoufi, S., Oral, M., & Reisman, A. (2004). Data envelopment analysis literature: A bibliography 

update (1951--2001). Journal of socio-economic planning sciences, 38(2–3), 159–229. https://B2n.ir/nx5174  

[31]  Seiford, L. M., & Zhu, J. (2005). A response to comments on modeling undesirable factors in efficiency 

evaluation. European journal of operational research, 161(2), 579–581. 

[32]  Noura, A. A., & Hoseini, E. (2013). Measuring congestion in data envelopment analysis with common 

weights. International journal of data envelopment analysis, 3(1), 627–632. (In Persian). 

https://www.sid.ir/FileServer/JE/5072820130301 

[33]  Karimi, B., Khorram, E., & Moeini, M. (2016). Identification of congestion by means of integer-valued 

data envelopment analysis. Computers & industrial engineering, 98, 513–521. 

https://doi.org/10.1016/j.cie.2016.06.017 

[34]  Lozano, S., & Villa, G. (2006). Data envelopment analysis of integer-valued inputs and outputs. 

Computers & operations research, 33(10), 3004–3014. https://doi.org/10.1016/j.cor.2005.02.031 

[35]  Lozano, S., & Villa, G. (2007). Integer DEA models: How DEA models can handle integer inputs and 

outputs. Modeling data irregularities and structural complexities in data envelopment analysis, 271–289. 

https://doi.org/10.1007/978-0-387-71607-7_15 

[36]  Matin, R. K., & Kuosmanen, T. (2009). Theory of integer-valued data envelopment analysis under 

alternative returns to scale axioms. Omega, 37(5), 988–995. https://doi.org/10.1016/j.omega.2008.11.002 

[37]  Kuosmanen, T., & Matin, R. K. (2009). Theory of integer-valued data envelopment analysis. European 

journal of operational research, 192(2), 658–667. https://doi.org/10.1016/j.ejor.2007.09.040 

 

 

 

 

 

 


