A Survey of The Centroids of Fuzzy Numbers and Applications
Abstract
This paper presents a thorough review of the various methods for determining the centroids of fuzzy numbers, highlighting their significance in fuzzy set theory and decision-making processes. Starting with the foundational concepts of fuzzy sets and fuzzy numbers, including triangular and trapezoidal forms, the study critically examines existing centroid calculation formulas, addressing their advantages and limitations. The review identifies common errors in previous approaches, emphasizing the necessity for accurate and consistent centroid formulae. Furthermore, the paper explores multiple applications of centroid-based fuzzy number ranking, notably in decision-making and Multi-Criteria Decision Making (MCDM). It demonstrates that precise centroid computation is essential for effective fuzzy number comparison and ranking, ultimately enhancing the reliability of fuzzy logic applications in engineering, management, and applied sciences.
Keywords:
Fuzzy numbers, Fuzzy set theory, Decision-making, Multi-criteria decision making, Fuzzy logic applicationsReferences
- [1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
- [2] Atanassov, K. (1986). Intuitionistic fuzzy sets. fuzzy sets and systems. Fuzzy sets and systems, 20(1), 87–96. http://dx.doi.org/10.1016/S0165-0114(86)80034-3
- [3] Chu, T. C., & Lin, Y. C. (2003). A fuzzy TOPSIS method for robot selection. The international journal of advanced manufacturing technology, 21, 284–290. https://doi.org/10.1007/s001700300033
- [4] Chou, S. Y., & Chang, Y. H. (2008). A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach. Expert systems with applications, 34(4), 2241–2253. https://doi.org/10.1016/j.eswa.2007.03.001
- [5] Chou, S. Y., Chang, Y. H., & Shen, C. Y. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European journal of operational research, 189(1), 132–145. https://doi.org/10.1016/j.ejor.2007.05.006
- [6] Tseng, M. L. (2010). An assessment of cause and effect decision-making model for firm environmental knowledge management capacities in uncertainty. Environmental monitoring and assessment, 161, 549–564. https://doi.org/10.1007/s10661-009-0767-2
- [7] Tseng, M. L. (2011). Using a hybrid MCDM model to evaluate firm environmental knowledge management in uncertainty. Applied soft computing, 11(1), 1340–1352. https://doi.org/10.1016/j.asoc.2010.04.006
- [8] Tseng, M. L. (2011). Green supply chain management with linguistic preferences and incomplete information. Applied soft computing, 11(8), 4894–4903. https://doi.org/10.1016/j.asoc.2011.06.010
- [9] Azadeh, A., Osanloo, M., & Ataei, M. (2010). A new approach to mining method selection based on modifying the Nicholas technique. Applied soft computing, 10(4), 1040–1061. https://doi.org/10.1016/j.asoc.2009.09.002
- [10] Dağdeviren, M., Yavuz, S., & Kılınç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert systems with applications, 36(4), 8143–8151. https://doi.org/10.1016/j.eswa.2008.10.016
- [11] Filev, D. P., & Yager, R. R. (1991). A generalized defuzzification method via BAD distributions. International journal of intelligent systems, 6(7), 687–697. https://doi.org/10.1002/int.4550060702
- [12] Kandel, A. (1986). Fuzzy mathematical techniques with applications. Addison-Wesley Longman Publishing Co. https://doi.org/10.5555/6765
- [13] Yager, R. R., & Filev, D. P. (1993). Slide: A simple adaptive defuzzification method. IEEE transactions on fuzzy systems, 1(1), 69. https://doi.org/10.1109/TFUZZ.1993.390286
- [14] Abbasbandy, S., & Asady, B. (2004). The nearest trapezoidal fuzzy number to a fuzzy quantity. Applied mathematics and computation, 156(2), 381–386. https://doi.org/10.1016/j.amc.2003.07.025
- [15] Wang, Y. M., Yang, J. B., Xu, D. L., & Chin, K. S. (2006). On the centroids of fuzzy numbers. Fuzzy sets and systems, 157(7), 919–926. https://doi.org/10.1016/j.fss.2005.11.006
- [16] Chanas, S., Delgado, M., Verdegay, J. L., & Vila, M. A. (1993). Ranking fuzzy interval numbers in the setting of random sets. Information sciences, 69(3), 201–217. https://doi.org/10.1016/0020-0255(93)90120-B
- [17] Orlovsky, S. (1993). Decision-making with a fuzzy preference relation. In Readings in fuzzy sets for intelligent systems (pp. 717–723). Elsevier. https://doi.org/10.1016/B978-1-4832-1450-4.50077-8
- [18] Cheng, C. H. (1998). A new approach for ranking fuzzy numbers by distance method. Fuzzy sets and systems, 95(3), 307–317. https://doi.org/10.1016/S0165-0114(96)00272-2
- [19] Shieh, B. S. (2007). An approach to centroids of fuzzy numbers. International journal of fuzzy systems, 9(1), 51–54. https://www.researchgate.net/publication/238068920_An_Approach_to_Centroids_of_Fuzzy_Numbers
- [20] Wang, Y. J., & Lee, H. S. (2008). The revised method of ranking fuzzy numbers with an area between the centroid and original points. Computers & mathematics with applications, 55(9), 2033–2042. https://doi.org/10.1016/j.camwa.2007.07.015
- [21] Chu, T. C., & Tsao, C. T. (2002). Ranking fuzzy numbers with an area between the centroid point and original point. Computers & mathematics with applications, 43(1–2), 111–117. https://doi.org/10.1016/S0898-1221(01)00277-2
- [22] [22] Ramli, N., & Mohamad, D. (2009). A comparative analysis of centroid methods in ranking fuzzy numbers. European journal of scientific research, 28(3), 492–501. https://doi.org/10.5923/j.ijcem.20160502.02
- [23] Pan, H., & Yeh, C. H. (2003). Fuzzy project scheduling. The 12th ieee international conference on fuzzy systems, 2003. fuzz’03. (Vol. 1, pp. 755–760). IEEE. https://doi.org/10.1109/FUZZ.2003.1209458
- [24] Pan, H., & Yeh, C. H. (2003). A metaheuristic approach to fuzzy project scheduling. International conference on knowledge-based and intelligent information and engineering systems (pp. 1081–1087). Springer. http://dx.doi.org/10.1007/978-3-540-45224-9_145
- [25] Yager, R. R. (1979). Ranking fuzzy subsets over the unit interval. 1978 IEEE conference on decision and control including the 17th symposium on adaptive processes (pp. 1435–1437). IEEE. https://ieeexplore.ieee.org/abstract/document/4046341/
- [26] Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information sciences, 24(2), 143–161. https://doi.org/10.1016/0020-0255(81)90017-7
- [27] Murakami, S., & Maeda, M. (1984). Fuzzy decision analysis in the development of centralized regional energy control systems. Energy development, (United States), 6(4). https://www.osti.gov/biblio/5035693
- [28] Abbasbandy, S., & Hajjari, T. (2011). An improvement in centroid point method for ranking of fuzzy numbers, 20(78), 109–117. https://www.sid.ir/FileServer/JE/959201178-201
- [29] Varghese, A., & Kuriakose, S. (2012). Centroid of an intuitionistic fuzzy number. Notes on intuitionistic fuzzy sets, 18(1), 19–24. https://ifigenia.org/images/archive/1/1b/20120721115607!NIFS-18-1-19-24.pdf
- [30] Asady, B., & Zendehnam, A. (2007). Ranking fuzzy numbers by distance minimization. Applied mathematical modelling, 31(11), 2589–2598. https://doi.org/10.1016/j.apm.2006.10.018
- [31] Parandin, N., & Fariborzi, A. M. A. (2008). Ranking of fuzzy numbers by distance method, 5(19), 47–55. https://www.sid.ir/FileServer/JE/134520081905
- [32] Saneifard, R., & Nahid, S. (2013). A new parametric method for ranking fuzzy numbers based on positive and negative ideal solutions, 5(2), 119–128. https://sid.ir/paper/231733/en
- [33] Saneifard, R. (2009). Ranking LR fuzzy numbers with weighted averaging based on levels, 1(2), 163–173. https://doi.org/1016220090206.pdf
- [34] Nasibov, E. N., & Mert, A. (2007). On methods of defuzzification of parametrically represented fuzzy numbers. Automatic control and computer sciences, 41, 265–273. https://doi.org/10.3103/S0146411607050057
- [35] Kumar, A., Singh, P., & Kaur, A. (2010). Ranking of generalized exponential fuzzy numbers using integral value approach. International journal of advances in soft computing and its applications, 2(2), 1–10. https://www.academia.edu/download/77445202/vol.2.2.5.July.10.pdf
- [36] Liou, T. S., & Wang, M. J. J. (1992). Ranking fuzzy numbers with integral value. Fuzzy sets and systems, 50(3), 247–255. https://doi.org/10.1016/0165-0114(92)90223-Q
- [37] Rao, P. P. B., & Shankar, N. R. (2011). Ranking fuzzy numbers with a distance method using circumcenter of centroids and an index of modality. Advances in fuzzy systems, 2011(1), 178308. https://doi.org/10.1155/2011/178308
- [38] Ezzati, R., Allahviranloo, T., Khezerloo, S., & Khezerloo, M. (2012). An approach for ranking of fuzzy numbers. Expert systems with applications, 39(1), 690–695. https://doi.org/10.1016/j.eswa.2011.07.060
- [39] Abbasbandy, S., & Hajjari, T. (2009). A new approach for ranking of trapezoidal fuzzy numbers. Computers & mathematics with applications, 57(3), 413–419. https://doi.org/10.1016/j.camwa.2008.10.090
- [40] Yong, D., & Qi, L. (2005). A TOPSIS-based centroid--index ranking method of fuzzy numbers and its application in decision-making. Cybernetics and systems: An international journal, 36(6), 581–595. https://doi.org/10.1080/01969720590961727
- [41] Ganesh, A. H., & Jayakumar, S. (2014). Ranking of fuzzy numbers using radius of gyration of centroids. International journal of basic and applied sciences, 3(1), 17. http://dx.doi.org/10.14419/ijbas.v3i1.1477
- [42] Dhanasekar, S., Hariharan, S., & Sekar, P. (2014). Ranking of generalized trapezoidal fuzzy numbers using Haar wavelet. Applied mathematical sciences, 8(160), 7951–7958. http://dx.doi.org/10.12988/ams.2014.410798
- [43] Barkhordari, A. M. (2014). Ranking of fuzzy numbers based on angle measure, 3(1), 259–265. http://dx.doi.org/1046820140106.pdf
- [44] Ezzati, R., Khezerloo, S., & Ziari, S. (2015). Application of parametric form for ranking of fuzzy numbers. Iranian journal of fuzzy systems, 12(1), 59–74. https://ijfs.usb.ac.ir/article_1842_27cb3eea8770ed442d2b473b328b2217.pdf
- [45] Lotfi, M., Salahshour, S., Esfahani, F. N., & Jafarnejad, A. (2016). A new approach for ranking fuzzy numbers. Journal of fuzzy set valued analysis, 2016, 102–109. http://dx.doi.org/10.5899/2016/jfsva-00277
- [46] Hadi-Vencheh, A., & Mokhtarian, M. N. (2011). A new fuzzy MCDM approach based on centroid of fuzzy numbers. Expert systems with applications, 38(5), 5226–5230. https://doi.org/10.1016/j.eswa.2010.10.036
- [47] Hadi-Vencheh, A., & Allame, M. (2010). On the relation between a fuzzy number and its centroid. Computers & mathematics with applications, 59(11), 3578–3582. https://doi.org/10.1016/j.camwa.2010.03.051